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Transcranial ultrasound

A non-invasive method that uses acoustic energy to
induce biological effects on the brain.

Thermoablation​

BBB opening​

Neuromodulation​

Requires a treatment plan:

This includes the appropriate delays / phase shift for
focusing the acoustic waves (beamforming).

They must be tailored to the patient.

Large intersubject variability​ of skull geometry and
material properties.



The ideal goal is Real time treatment planning from MRI images

In reality, there are many steps involved, some of which are uncertain while others are
computationally demanding
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Acoustic parameters are currently indirectly derived from CT scans. Deep learing is being applied
to do so from MRI acquisitions [1,2]

[1] Yaakub, 2021; [2] Miscouridou, 2021
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We will focus on the simulation step, which mainly suffers from demanding computational
requirements.



Helmholtz equation

Is derived from the wave equation by assuming single-frequency
complex sources.

L ​u =c ∇ + ​ u =( 2

c2

ω2 ) s

The boundary conditions are given, at infinity, by the Sommerfield
radiation condition. These can be approximated on a finite domain
using an absorbing layer around the edges.

Despite depending on the speed of sound , the operator  is

linear over the space of complex functions: we can focus on solving
the problem with a fixed source.

c L ​c



Challenges

Discretization:

Transform the problem into a its discrete counterpart

L ​u =c ρ → L ​u =c ρ

Finite Differences, Pseudo Spectral, Finite Elements, Neural Networks

Generally heavy for real-life problems (~Gb per field)

Finite Elements can reduce the size of the discrete problem: drawback is setup time for creating
the mesh



Challenges

Solving the Helmholtz equation

Can solve the Helmholtz equation as the steady-state solution of the wave equation. The solution 

 is then approximated by running a wave simulator long enough.

Finding the solution  of the Helmholtz equation can also be casted as a minimization problem:

u =∗ arg ​ L ​u − ρ
u

min ∥ c ∥

Conditioning


Krylov methods, like GMRES, solve the problem in the subspace .


Convergence is slow or not guaranteed (restarted GMRES).

Domain decomposition methods [3]

u∗

u∗

K = {ρ,L ​ρ,L ​ρ,L ​ρ, … }c c
2

c
3

[3] Gander, 2019



Learned methods
Mesh-free

Use a neural network to represent the solution field [4]

from [Meng, 2019]

For the Helmholtz equation, sinusoidal activations [5] and attention mechanisms [6] have been
suggested.

[4] Raissi,  2019; [5] Sitzmann, 2020; [6] Wang, 2019



Learned methods
Error correction

Work by interleaving a neural network with an iterative solver

from [Siahkoohi, 2019]

Proposed for the Helmholtz equation [7], time-domain wave solvers [8] and for parallel time
integration [9]

[7] Rizzuti,  2019; [8] Siahkoohi, 2019; [9] Nguyen, 2021



Learned methods
Learning to minimize

By looking at the problem from the optimization point of view, an alternative approach is given by
learning directly the minimization algorithm.

from [Andrychowicz, 2016]

Pioneered by [10], extended to inverse problems by [11]

[10] Andrychowicz, 2016; [11] Putzky, 2017



Learning a Helmholtz solver [12]

Learn an iterative update algorithm for the wavefield, conditioned on the
heterogeneous speed of sound and source

u ​ =k+1 u ​ +k f ​(u ​, c, ρ)θ k

We leverage the knowledge of the forward operator by making the dependene to 

adn  implicit, using the residual 

u ​ =k+1 u ​ +k f ​(u ​, e ​) e ​ =θ k k k L u ​ −c k ρ

To strenghten the connection with iterative solvers, we add memory  of the

previous states

u ​ =k+1 u ​ +k Δu ​ (Δu ​, h ​) =k+1 k+1 k+1 f ​(u ​, e ​, h ​)θ k k k

c

ρ e ​k

h ​k

[12] A. Stanziola, S. Arridge, B. T. Cox, B. E. Treeby, JCP 2021



The resulting model is a recurrent neural network which includes the discretized Helmholtz
operator.



~47k parameters



Dataset

9000/1000/1000 very idealized skulls ( )

Point-source at fixed location

– Random location for validation

Neural network with best validation loss at last
iteration

is saved

No ground truth! Trained using physics loss

C ​ =k ∥e ​∥k 2

96 × 96



Training

We use truncated backpropagation through time, to alleviate memory requirements

R = ​C ​

k=0

∑
T

k

with , coupled with a replay buffer

Replay buffer

T = 10



Results



Convergence



After 1000 iterations



Compare with GMRES

Iterations: 10, 20, 50, 100, 250
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Generalization
Different speeds of sound

The network can generalize to speeds of sound maps not seen during traininng


It still maintains a speed advantage compared to GMRES.



Generalization
Large domain



0:00 / 1:00



Predicted field
 Error
 1%


0.01%



Limitations

Some test-set outliers show large final errors


Presence of mode-like structures (similar to whispering gallery modes): it takes longer for time-
domain solvers too in those examples

This doesn’t seem to happen on more complex sound speed distributions (e.g. real skull)



Conclusions

Can learn a lightweight iterative solver for the heterogeneous Helmholtz equation

No ground-truth samples are required

The learned optimized can generalize well outside the training set.

Open questions

What’s the best training strategy? Can the Replay Buffer be removed?

How to ensure convergence of the iterative solver? What’s a good loss function in absence of
labeled data?

How well does this translate in 3D?

Can the problem be compressed to a more manageable size, rather than using small neural
network models?

Can we explicitly train for a fast solver?



How can we get closer to the ideal goal?

Acoustic 
parameters

Simulated 
wavefields Evaluation

Transmit 
parameters

Treatment 
plan

Clinical 
images



How can we get closer to the ideal goal?

Acoustic 
parameters

Simulated 
wavefields Evaluation

Transmit 
parameters

Treatment 
plan

Clinical 
images



How can we get closer to the ideal goal?

Acoustic 
parameters

Simulated 
wavefields Evaluation

Transmit 
parameters

Treatment 
plan

Clinical 
images



How can we get closer to the ideal goal?

Acoustic 
parameters

Simulated 
wavefields Evaluation

Transmit 
parameters

Treatment 
plan

Clinical 
images

In either case, it is benefiical to have a differentiable simulator that can be dissected.

This is also used in several works on solving various PDEs, e.g. [13]

[13] Kochkov,,  2021



Conclusions

Machine learning is increasingly being
used to augment or learn acoustic
simulators

It is possible to learn a lightweight
iterative solver for the heterogeneous
Helmholtz equation

More research is needed to understand the
best training strategy and architecture

End to end training can be done with a
differentiable simulator
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Thank you


