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Classical and learned MR to pseudo-CT mappings
for accurate transcranial ultrasound simulation

Maria Miscouridou, José A. Pineda-Pardo, Charlotte J. Stagg, Bradley E. Treeby, and Antonio Stanziola

Abstract—Model-based treatment planning for transcranial
ultrasound therapy typically involves mapping the acoustic prop-
erties of the skull from an x-ray computed tomography (CT)
image of the head. Here, three methods for generating pseudo-CT
images from magnetic resonance (MR) images were compared as
an alternative to CT. A convolutional neural network (U-Net) was
trained on paired MR-CT images to generate pseudo-CT images
from either T1-weighted or zero-echo time (ZTE) MR images
(denoted tCT and zCT, respectively). A direct mapping from
ZTE to pseudo-CT was also implemented (denoted cCT). When
comparing the pseudo-CT and ground truth CT images for the
test set, the mean absolute error was 133, 83, and 145 Hounsfield
units (HU) across the whole head, and 398, 222, and 336 HU
within the skull for the tCT, zCT, and cCT images, respectively.
Ultrasound simulations were also performed using the generated
pseudo-CT images and compared to simulations based on CT. An
annular array transducer was used targeting the visual or motor
cortex. The mean differences in the simulated focal pressure,
focal position, and focal volume were 9.9%, 1.5 mm, and 15.1%
for simulations based on the tCT images, 5.7%, 0.6 mm, and
5.7% for the zCT, and 6.7%, 0.9 mm, and 12.1% for the cCT.
The improved results for images mapped from ZTE highlight the
advantage of using imaging sequences which improve contrast of
the skull bone. Overall, these results demonstrate that acoustic
simulations based on MR images can give comparable accuracy
to those based on CT.

Index Terms—deep learning, convolutional neural network,
MRI, CT, pseudo-CT, transcranial ultrasound stimulation, acous-
tic simulation

I. INTRODUCTION

Transcranial ultrasound therapy is a class of non-invasive
techniques that leverage ultrasound energy to modify the
structure or function of the brain, for example, to ablate brain
tissue [1], modulate brain activity [2], or deliver therapeutic
agents through the blood-brain barrier [3]. The major challenge
is the delivery of ultrasound through the intact skull bone,
which can significantly aberrate and attenuate the transmitted
ultrasound waves. To counter the effect of the skull, computer
simulations are often used to predict the intracranial pressure
field [4], or to adjust phase delays to ensure a coherent focus
[5]. Conventionally, these simulations are based on acoustic
material property maps extracted from x-ray computed tomog-
raphy (CT) images [6]. For clinical treatments in a hospital
environment, obtaining pre-treatment CT images doesn’t nec-
essarily pose significant challenges. However, for transcranial
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ultrasound stimulation (TUS), which is being widely explored
as a neuroscientific tool in addition to its potential clinical
applications [7], obtaining CT images for healthy volunteer
studies can be more problematic. In the current work, the
use of pseudo-CT (pCT) images for computer simulations
of transcranial ultrasound propagation in a TUS setting is
investigated. Three different methods of pCT generation are
compared: (1) using a deep neural network based on T1-
weighted (T1w) magnetic resonance (MR) images, (2) using
a deep neural network based on zero-echo time (ZTE) MR
images, and (3) directly mapping from ZTE MR images using
classical image processing techniques following Wiesinger [8].

The image-to-image translation (I2IT) of MR to pCT images
of the brain and skull has been widely explored in the imaging
literature, particularly in the context of PET-MR, where the
pCT images are used for PET attenuation correction [9], and
radiotherapy planning [10]. In many cases, deep learning has
been shown to out-perform classical techniques [11]. A variety
of models and techniques have been used, including generative
neural networks (GANs) [12], [13], supervised learning [14],
contrastive learning [15], [16] and denoising diffusion proba-
bilistic models [17]. Often, the network architecture accounts
for features at multiple scales using a U-Net [11], [18]. The
inputs to the neural network can be the full 3D image volumes
[19], 2D slices along one or multiple planes [20], or small 3D
patches [21].

The performance of the trained network is heavily influ-
enced by the quality of the training dataset and choice of
loss function. Ideally, the loss should be directly related to
the final performance of interest: in our case, the acoustic
properties of the generated fields from the pCT (see Sec. II-E).
However, in the absence of an efficient differentiable acoustic
simulator, the corresponding training regime is often inefficient
and losses are therefore defined in image space. Simple voxel-
based metrics, such as mean absolute error (MAE) and mean
squared error (MSE), are often used when registered image
pairs are available [22].

Unpaired images can also be used for successfully train-
ing I2IT models, often by relying on some form of cycle-
consistency loss [23]–[25] implemented using a discriminator
neural network [26]. While theoretically effective and of-
ten capable of training complex models, such as ones that
disentangle geometrical features and imaging modality [27],
training generative neural networks against a discriminator can
be challenging and often unstable [28].

Several previous works have investigated the use of learned
pCTs for transcranial ultrasound simulation. In the context
of high-intensity focused ultrasound (HIFU) ablation, Su et
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al [29] used a 2D U-Net trained on transverse slices from a
dataset of 41 paired dual-echo ultrashort echo time (UTE) MR
images and segmented CT images (only the segmented skull
bone was used for training). Within the skull, the pCT images
generated from the test set had a MAE of 105 ± 21 HU, and
showed good correlation with CT in terms of skull thickness
and skull density ratio. Coupled acoustic-thermal simulations
were performed for a 1024 multi-element array and a deep
brain target. Differences in the simulated acoustic field were
not reported, but differences in the predicted peak temperature
were less than 2 ◦C.

In a related study, Liu et al [30] used a 3D conditional
generative adversarial network (cGAN) trained on patches
from a dataset of 86 paired T1w and segmented CT skull
images. Within the skull, the pCT images generated from the
test set had a MAE of 191 ± 22 HU, and similarly showed
good correlation with CT in terms of skull thickness and skull
density ratio. Acoustic simulations for a 1024 multi-element
array and deep brain target showed an average 23 ± 6.5 %
difference in the simulated intracranial spatial-peak pressure
when using pCT vs CT, and 0.35 ± 0.40 mm difference in
the focal position.

In the context of TUS, Koh et al [31] used a 3D cGAN
trained on 3D patches from a dataset of 33 paired T1w and
CT images. The generated pCT images had a MAE of 86 ±
9 HU within the head, and 280 ± 24 HU within the skull.
Acoustic simulations were performed using a single-element
bowl transducer driven at 200 kHz targeted at three brain
regions (M1, V1, dACC). Across all targets for the test set,
the mean difference in the simulated intracranial peak pressure
was 3.11 ± 2.79 % and the mean difference in the focal
position was 0.86 ± 0.52 mm. However, aberrations to the
ultrasound waves are known to be significantly reduced at low
transmit frequencies [32], [33], and thus the performance of
learned pCTs at higher frequencies more commonly used for
TUS remains an open question.

Several studies have also explored directly mapping the
skull acoustic properties from T1w [34], UTE [35]–[37] or
ZTE [38] images. Wintermark et al [34] generated virtual CTs
from 3 different MR sequences and used a Bayesian segmenta-
tion strategy using a skull mask (obtained by CT thresholding)
as a prior. Linear regression was used to estimate skull
thickness and density, with the mappings from T1w images
performing best. Acoustic simulations using calculated phase
correction values from virtual CT showed good agreement
with those from real CT. Phantom HIFU experiments were
also performed where the difference in maximum temperature
was 1 ◦C when using MR-based correction compared to CT-
based correction.

In a similar study, Miller et al [35] investigated using UTE
images instead of CT to apply aberration corrections for HIFU
treatments. Three ex vivo skull phantoms were imaged by UTE
and CT, and the UTE was segmented into a binary skull mask.
Experimental transcranial sonications were performed on each
skull using aberration corrections derived from MR, CT, and
using no corrections. The measured temperature rises with
aberration corrections were 45% higher than non-corrected
sonications, while there was no significant difference between

the results from MR and CT-calculated corrections. UTE has
also been shown to produce images with bone contrast highly
correlated to that in CT images [36].

Guo et al [37] also investigated the use of UTE images
using a series of linear mappings and thresholding operations
to derive pCT images. A linear regression model comparing
skull density from UTE and CT showed they were highly
correlated. Acoustic properties of the skull derived from the
UTE and CT images had less than 5% error and were used
to run acoustic and thermal simulations. The temperature rise
was 1 ◦C higher in CT-based simulations compared to UTE
simulations and the focal location was usually within 1 pixel
(1.33 mm).

Finally, Caballero et al [38] extracted the bone from ZTE
and CT images with a series of thresholding and morpho-
logical operators, and used the bone maps to extract skull
measures, such as skull thickness and skull density ratio. It was
demonstrated with linear regression that the skull measures
derived from the two modalities highly correlate to each other,
and also correlate with treatment efficiency.

The recent studies outlined above clearly demonstrate the
feasibility of using pCT images for treatment planning in
transcranial ultrasound therapy. Here, the previous results are
extended in two ways. First, the ability to generate pCT images
from T1w and ZTE images is directly compared using a
unique dataset with high-resolution multi-modality imaging
data. While T1w images are widely available, they suffer from
poor skull contrast, particularly compared to specialised bone
imaging sequences which enable visualisation of the bony
anatomy [8]. Second, acoustic simulations are performed in the
context of TUS using a commonly-used transducer geometry
and a 500 kHz transmit frequency for both motor [39], [40]
and visual [41] targets.

II. METHODS

A. Multi-modality data set

The dataset used for the study consisted of paired high-
resolution CT and MR images. Subjects had previously been
scheduled for transcranial MR-guided Focused Ultrasound
Surgery (tcMRgFUS) thalamotomy. The study protocol was
approved by the HM Hospitales Ethics Committee for Clinical
Research and all participants provided written consent forms.
Each subject had a CT and T1-weighted (fast-spoiled gradient
echo) MR image, and a subset of them also had a ZTE MR
image, giving a total of 171 paired CT-T1w datasets and 90
paired CT-ZTE datasets. The CT images were reconstructed
using a bone-edge enhancement filter (FC30) and had an in-
plane resolution of approximately 0.45×0.45 mm (this varied
slightly between subjects) with a slice thickness of 1 mm. The
MR images were acquired using a 3T GE Discovery 750 with
an isotropic voxel size of 1 mm. Image acquisition parameters
are described in detail in [38].

The images were processed as follows. First, bias-field
correction was performed on the MR images using FAST
[42] to reduce image intensity non-uniformities resulting from
magnetic field variations. The CT images were then registered
to the corresponding MR images using FLIRT [43], [44],
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CT T1w

ZTE Head Mask

Fig. 1. The input to the neural network is one or multiple adjacent transverse
MR slices, acquired either using ZTE or T1w sequences. The output of the
neural network is multiplied by a head mask and compared to the registered
CT inside the mask.

using affine registration with 12 degrees-of-freedom and a
mutual-information cost function. As part of the registration
step, CT images were resampled to match the resolution (1
mm isotropic) and field-of-view of the MR images. After
registration, all volumes were padded to a cube with an edge
length of 256 voxels. Following Han et al [11], the MR
image intensities were then processed using midway histogram
equalisation [45]. The reference histogram was computed
using images from the training set only (see Sec. II-B), and
was computed separately for the ZTE and T1w images. The
images were also normalised using the mean and standard
deviation of the appropriate training set.

To remove image artefacts (such as dental implants, equip-
ment, headphones) and the bones outside the neurocranium
(which are not relevant to TUS), a binary mask was manually
annotated on the MNI152_T1_1mm template brain [46], [47].
The MNI mask excluded the nasal and oral cavities, as well as
everything below the foramen magnum. The MNI mask was
then mapped to subject space by registering the MR images
to the MNI template using FLIRT. The registered MNI mask
was combined with a head mask (obtained by thresholding
and filling the MR) to give a subject specific mask that was
used during training as described below. An example is given
in Fig. 1. Note that the generation of the subject specific mask
doesn’t require a ground truth CT, so it can be applied to any
new subject data during inference.

B. Network architecture and training

For mapping MR images to pCT, a 5-level U-Net [48] was
implemented using Pytorch [49] similar to the architecture
reported by Han [11]. Each level of the encoder consisted of
either two (levels 1 and 2) or three (levels 3 to 5) convolutional

layers with a rectified linear unit (ReLU) activation function
followed by a batch normalisation layer. The convolutions
used zero-padding, a 3 × 3 kernel, and a stride of 1. A max
pooling layer was used between each level of the encoder, and
skip connections between the encoder and decoder were used
for the first four levels. The decoder was implemented as a
mirrored version of the encoder with convolutional transpose
(unpooling) layers [50] instead of max pooling layers. Both
pooling and unpooling layers used a 2×2 kernel size and stride
2, followed by a dropout layer. The dropout probability pD
was treated as a tunable hyperparameter which was optimised
using the validation set. The best models for T1w and ZTE
inputs were obtained with pD = 0.1 and pD = 0, respectively.

The input to the network was a n × 256 × 256 block of
n consecutive 2D transverse MR slices (see top-right and
bottom-left of Fig. 1 for an example of one slice). Using a
small stack of images gives some 3D structural information
to the network, as suggested in the discussion section of [11].
The network output was always a single 2D transverse slice
corresponding to the middle input slice, and 3D pCT volumes
were reconstructed slice by slice. Input stack sizes of 1, 3,
5, 7, 9, 11, and 15 were used in preliminary testing. A stack
size of 11, i.e. 5 additional image slices on either side of the
primary input slice, gave the lowest MAE on the validation set.
Notably, the use of multiple input slices significantly reduced
the occurrence of skull discontinuities between slices in the 3D
pCT images, particularly for the T1w inputs (this is discussed
further in Sec. III-A). A stack size of 11 was thus used in all
subsequent training.

The input was mapped to 64 channels in the first convolu-
tion. The number of channels was doubled at each layer of
the encoder and halved in each layer of the decoder, except
for the deep-most layer. A final 1× 1 convolutional layer was
implemented to map each 64-component feature vector from
the previous layer to image voxels in Hounsfield units.

The network was trained separately for T1w and ZTE
inputs. The ZTE dataset consisted of 90 subjects, with 62
subjects used for the training set ΩT , 14 for the validation set
ΩV and 14 for the testing set ΩE . Subjects were randomly
assigned to each set. The T1w dataset consisted of 171
subjects. The same 14 subjects were used for the test set,
with 26 subjects used for the validation set, and 131 for
the training set. Data augmentation was also performed using
random affine transformations with bilinear interpolation, with
rotations in the range ±10◦, translations between ±5% of the
image size, and shears parallel to the x axis of ±2.5◦.

The network fθ was trained by minimising the average `1
norm of the masked error over the training set

L(θ) =
1

|ΩT |
∑
i∈ΩT

1

Ni
‖mi(yi − fθ(xi))‖1, (1)

where xi is the stack of one or more adjacent input MR
image slices, yi is the corresponding slice from the ground
truth CT, mi is the corresponding mask (see Fig. 1) and Ni is
the number of pixels in the i-th image. The loss function was
evaluated stochastically for each optimisation step, by drawing
a random mini-batch of size 32 from the training set. The
Adam optimiser [51] was used along with reduce on plateau
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scheduling with patience = 5, factor = 0.2 and a learning
rate reducing from 10−4 to 10−6. The networks were trained
for 300 epochs on an NVIDIA Tesla P40 GPU, with 24 GB
RAM.

C. Classical ZTE mapping

For comparison with the learned pCT mappings, a direct
conversion of the ZTE images to pCT was also implemented
following [8], [52]. In this case, bias field correction was
applied to the ZTE images using the N4ITK method within
3D Slicer (V4.11.20210226). Voxel intensities for each image
were individually normalised based on the soft-tissue peak in
the image histogram to give a soft-tissue intensity of 1. A
skull mask was generated by thresholding the voxel intensities
between 0.2 and 0.75 (bone/air and bone/soft-tissue), taking
the largest connected component, and then filling the mask
using morphological operations. Within the skull mask, ZTE
values were mapped directly to CT HU using the linear
relationship CT = −2085 ZTE + 2329. This relationship
was calculated by taking the first principal component of the
density plot of ZTE values vs CT values within the skull.
Outside the skull mask, air and soft-tissue were assigned
values of -1000 and 42 HU, respectively.

D. Evaluation of the pseudo-CT images

The three different methods for generating pCT images
were evaluated by comparing the generated 3D pCT volumes
for the 14 subjects in the test set against the corresponding
ground truth CTs. Image intensities were compared using
mean absolute error (MAE) and the root mean squared error
(RMSE). Both metrics were evaluated across the whole head
(comparing voxels within the subject specific head mask) and
in the skull only (using a skull mask derived by thresholding
the ground truth CTs and combining with the head mask to
exclude bones outside the neurocranium). For convenience, the
different generated pCTs are referred to as tCT (for the learned
pCT mapped from a T1w image), zCT (for the learned pCT
mapped from a ZTE image), and cCT (for the pCT directly
converted from a ZTE image using classical image processing
techniques as explained in Sec. II-C).

E. Ultrasound simulations using k-Wave

Acoustic simulations were performed using the open-source
k-Wave toolbox [53], [54]. CT and pCT image pairs were
converted to medium property maps as follows. First, the
images were resampled to the simulation resolution (0.5 mm)
using linear interpolation and then cropped. The images were
then segmented into skull, skin, brain, and background regions
using intensity-based thresholding along with morphological
operations. Within the soft-tissue, reference values were as-
signed for the acoustic properties. Within the skull, the sound
speed and density were mapped directly from the image values
in Hounsfield Units. The density was calculated using the con-
version curve from [55] (using the hounsfield2density
function in k-Wave). The sound speed c within the skull
was then calculated from the density values ρ using a linear

relationship of c = 1.33ρ + 167 [56]. A constant value of
attenuation within the skull was used. Note, other mappings
from CT images to acoustic properties are also possible (e.g.
[57]). However, as the same mapping is used for all image sets,
this choice does not strongly influence the simulated results.

The simulations were based on the NeuroFUS CTX-500
4-element annular array transducer (Sonic Concepts, Both-
ell, WA). The transducer was modelled using a staircase-
free formulation [58] using nominal values for the radius of
curvature (63.2 mm) and element aperture diameters (32.8,
46, 55.9, 64 mm). Simulations were run at 6 points per
wavelength (PPW) in water and 60 points per period (PPP),
which was sufficient to reproduce the relevant benchmark
results (PH1-BM7-SC1) reported in [59] with less than 0.2%
difference in the maximum pressure and no difference in the
focal position. The transducer was driven using a continuous
sinusoidal driving signal at 500 kHz until steady state was
reached.

Simulations were performed for the 14 skulls that formed
the test set. For each skull, 4 transducer positions were
used targeting the occipital pole of the primary visual cortex
and the hand knob of the primary motor cortex in both
hemispheres (giving a total of 56 comparisons for each pCT
image type). The target positions were first identified on
the MNI152_T1_1mm magnetic resonance imaging template
brain [46], [47]. Approximate positions of the targets on the
individual skulls were then calculated by registering the MR
images with the MNI template and using the transformation
matrix to map the target positions back to the individual skulls.
For comparison between the CT and pCT image pairs, all other
simulation parameters were kept identical except the image
used to derive the acoustic property maps.

The calculated acoustic pressure fields for each CT/pCT
pair were compared using the focal metrics outlined in [59]
using the code available from [60]. Briefly, the magnitude and
position of the spatial peak pressure within the brain were
compared, along with the -6 dB focal volume.

III. RESULTS

A. Pseudo-CT Images
Results for the MAE and RMSE for the generated 3D pCT

images against the ground truth CT images are given in Table
I. The zCT images generated using the learned mapping from
ZTE have significantly lower error values across both metrics
and both regions (complete head and skull only) compared to
the tCT and cCT images. This is not surprising given (1) the
ZTE image visually contains significantly more information
about the morphology of the skull bone compared to the T1w
image, and (2) the network has significantly more power to
learn an adaptive mapping to pCT compared to the fixed
mapping used for the cCT. In the skull, the cCT images
slightly out-perform the tCT images. This is possibly because
the additional bone information available to the cCT (but not
the tCT) outweighs the additional predictive power available
to the tCT (but not the cCT). Overall, the error values are
similar to those discussed in Sec. I.

Figure 2 shows the correlation between the CT and pCT
values within the skull mask (as identified from the ground
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TABLE I
MEAN ABSOLUTE ERROR (MAE) AND ROOT MEAN SQUARED ERROR

(RMSE) FOR THE 3D PCT IMAGES GENERATED USING THE 14 SUBJECTS
IN THE TEST SET AGAINST THE GROUND TRUTH CT IMAGES.

mask MAE (HU) RMSE (HU)

tCT 133 ± 46 288 ± 83
zCT 83 ± 26 186 ± 55head
cCT 145 ± 35 350 ± 62

tCT 398 ± 116 528 ± 144
zCT 222 ± 78 305 ± 102skull
cCT 336 ± 80 465 ± 101

truth CT). There is a good correlation observed for all pCT
images, with the lowest spread for the zCT matching the
results given in Table I. The good fit observed for the cCT
values demonstrates that a linear mapping from ZTE is a
reasonable choice. The robustness of these correlations to
variations in the specific MR sequence parameters (along with
processing parameters such as the debiasing settings) still
needs to be explored further.
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Fig. 2. Density plot showing the correlation between the pCT and ground
truth CT images for the test set. The white lines show y = x.

Examples of the generated pCT images and corresponding
error maps against CT for one subject from the test set
are shown in Fig. 3. The central sagittal slice through all
14 subjects along with individual MAE values are shown
in Fig. 4. Overall, there is a good quantitative agreement
between the pCT and ground truth CT images. The biggest
differences occur at the brain-skull and skull-skin boundaries,
consistent with previous studies [11]. This is primarily due
to the imperfect registration between the MR and CT images.
There are two contributing factors. First, the skin-air interfaces
are usually in slightly different places physically, e.g. due
to the mobility of the skin and differences in the subject
positioning during the MR and CT scans. Second, there are

differences in the rigid brain-skull boundaries due to geometric
distortions in the images that are not corrected by the affine
transformation used in the registration step. This is evident
in the difference plots for the cCT images, which uses a
simple thresholding of the ZTE image to obtain the skull
boundaries. The same misalignments are also apparent in
the training/validation images. Improving the registration step,
for example, by learning the registration as part of training
the network [61] or by iterating between training and re-
registration of the generated pCT images, will likely improve
the predictive capabilities of the learned mappings, and will
be the subject of future work.

As discussed in Sec. II-B, the input to the network was 11
consecutive 2D slices in the transverse direction. For the tCT
images, this significantly reduced the occurrence of discon-
tinuities in the skull between slices in the out-of-plane (e.g.
sagittal) direction. The discontinuities occur because of the
difficulty in consistently identifying the outer skull boundary
in the 2D T1w image slices, which is helped by providing the
network with local 3D information. However, even with 11
slices, visible discontinuities were still observed for a small
number of subjects in the test set (tCT 4, 6, and 13 in Fig. 4).
The equivalent network trained with a single input slice had
similar MAE and RMSE values to those given in Table I, while
the occurrence of local discontinuities in the skull was much
worse. Thus, this feature does not seem to be captured by the
error metrics used during training. This motivates using 3D
networks in the future, following related work [19] which has
shown that training on the full 3D skull volumes can produce
better results, albeit at a higher computational cost. The same
discontinuities were not observed for the zCT images, even
when using a single slice as input to the network.

Although not formally investigated in this study, it is inter-
esting to note that many of the subjects had small calcifications
within the deep structures of the brain visible on the CT images
(e.g., due to calcification of the choroid plexus). Some, but not
all, of these were visible on the zCT images in the test set, and
none were visible on the tCT images. Further work is needed
to quantify the ability of the learned mappings to correctly
reconstruct calcifications.

B. Acoustic Simulations

Results for the acoustic simulations are summarised in Table
II and Fig. 5. Subjects 4 and 6 from the tCT dataset were
excluded from the simulation evaluation as they displayed dis-
continuities on the top of the skull which made them unsuitable
for acoustic simulations. Similarly, cCT from subject 10 was
excluded as the predicted skull was not continuous due the
thresholding value not being suitable for this subject. Across
all pCT images and target locations, the mean differences in
the simulated focal pressure, focal position, and focal volume
were 7.3 ± 5.7 %, 0.99 ± 0.79 mm, and 11 ± 12 % (to
two significant figures). The best results were obtained when
using the zCT images for motor targets, where the equivalent
differences were 3.7%, 0.5 mm, and 3.9%. These values
compare well with the differences observed in experimental
repeatability [62] and numerical intercomparison [59] studies.
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Fig. 3. Example of pCT and error maps for a single subject in the test set. The pseudo-CTs are registered to the ground truth CT before comparison.

tCT 1 MAE 163

tCT 8 MAE 111

zCT 1 MAE 68

zCT 8 MAE 102

tCT 2 MAE 104

tCT 9 MAE 127

zCT 2 MAE 59

zCT 9 MAE 142

tCT 3 MAE 103

tCT 10 MAE 90

zCT 3 MAE 77

zCT 10 MAE 63

tCT 4 MAE 184

tCT 11 MAE 118

zCT 4 MAE 131

zCT 11 MAE 64

tCT 5 MAE 95

tCT 12 MAE 94

zCT 5 MAE 61

zCT 12 MAE 76

tCT 6 MAE 150

tCT 13 MAE 164

zCT 6 MAE 92

zCT 13 MAE 72

tCT 7 MAE 254

tCT 14 MAE 101

zCT 7 MAE 87

zCT 14 MAE 66

Fig. 4. Middle sagittal slice for the learned pseudo-CT images for the 14 test subjects. The mean absolute error (MAE) value reported is calculated inside
the head mask. A small number of the learned images mapped from T1w MR images have discontinuous skull boundaries.

For reference, the focal volume in water is 3.9 mm wide and
24 mm long.

Between the different pCT images, the simulations based
on the zCT images generally had the lowest average errors, as
well as the smallest variation (see the interquartile range shown
using the blue boxes in Fig. 5). The simulations based on
the both the zCT and cCT images consistently outperformed
the tCT images, demonstrating that skull-specific imaging can
improve the accuracy of the predictions. Interestingly, the

simulations based on the learned mappings (tCT and zCT)
generally over-estimated the focal pressure, while simulations
based on the the direct mapping (cCT) generally under-
estimated the focal pressure. This may be related to the sharp-
ness of the skull boundaries in the cCT images compared to
the learned images resulting in a stronger reflection coefficient.

Between the two targets, the errors for the motor cortex
were lower than the visual cortex, except for the focal pressure
metric for the cCT images. This is expected, as the shape of the
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TABLE II
ACOUSTIC METRICS ROUNDED TO 1 DECIMAL PLACE

Target CT focal pressure focal position focal volume
(%) (mm) (%)

mean std mean std mean std

V1
tCT 13.1 9.0 1.6 1.1 17.2 15.8
zCT 7.6 4.9 0.7 0.4 7.4 7.1
cCT 5.7 4.0 1.1 0.6 16.8 17.6

M1
tCT 6.7 3.5 1.4 0.8 13.0 13.3
zCT 3.7 2.7 0.5 0.4 3.9 2.8
cCT 7.8 3.8 0.7 0.5 7.4 5.7

All
tCT 9.9 7.5 1.5 1.0 15.1 14.6
zCT 5.7 4.4 0.6 0.4 5.7 5.6
cCT 6.7 4.0 0.9 0.6 12.1 13.8

skull is generally more variable close to the visual cortex due
to the internal and external occipital protuberance, which can
result in stronger aberrations to the acoustic field. Examples
from one test subject of the generated sound speed maps and
acoustic field distributions are given in Fig. 6.
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Fig. 5. Differences in the focal pressure, focal position, and focal volume
for acoustic simulations using different pseudo-CT images against simulations
using a ground truth CT. Results are divided into two sets, target in the visual
cortex (V1) and motor cortex (M1).

IV. SUMMARY

Three different approaches for generating pCT images from
MR images were investigated in the context of treatment
planning simulations for transcranial ultrasound stimulation. A
convolutional neural network (U-Net) was trained to generate
pCT images using paired MR-CT data with either T1w or
ZTE images as input. A direct mapping from ZTE to pCT was
also implemented based on [8]. For the image-based metrics,

the learned mapping from ZTE gave the lowest errors, with
MAE values of 83 and 222 HU in the whole head and skull-
only, respectively. The significant improvement compared to
the mapping from T1w images demonstrates the advantage of
using skull-specific MR imaging sequences.

Acoustic simulations were performed using the generated
pCT images for an annular array transducer targeted at either
the left and right motor cortices, or the left and right visual
cortices. Simulations using the pCT images based on ZTE
showed close agreement with ground truth simulations based
on CT, with mean errors in the focal pressure and focal volume
less than 7% and 9% respectively, and mean errors in the focal
position less than 0.8 mm (see Table II). Errors in simulations
using the learned pCT images mapped from T1w images were
higher, but still may be acceptable depending on the accuracy
required. These results demonstrate that acoustic simulations
based on mapping pCT images from MR can give comparable
results to simulations based on ground truth CT. This is
particularly important when treatment planning simulations are
required for healthy populations, where obtaining a CT image
can sometimes be problematic.
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