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Abstract

Transcranial ultrasound therapy is increasingly used for the non-invasive treatment of brain
disorders. However, conventional numerical wave solvers are currently too computationally
expensive to be used online during treatments to predict the acoustic field passing through
the skull (e.g., to account for subject-specific dose and targeting variations). As a step
towards real-time predictions, in the current work, a fast iterative solver for the heterogeneous
Helmholtz equation in 2D is developed using a fully-learned optimizer. The lightweight
network architecture is based on a modified UNet that includes a learned hidden state.
The network is trained using a physics-based loss function and a set of idealized sound
speed distributions with fully unsupervised training (no knowledge of the true solution is
required). The learned optimizer shows excellent performance on the test set, and is capable
of generalization well outside the training examples, including to much larger computational
domains, and more complex source and sound speed distributions, for example, those derived
from x-ray computed tomography images of the skull.

Keywords Helmholtz equation · learned optimizer · unsupervised learning · physics-based loss function ·
transcranial ultrasound

1 Introduction and background

1.1 Motivation

Transcranial ultrasound therapy is a rapidly emerging technique for the noninvasive treatment of brain
disorders in which ultrasound is used to cause functional or structural changes to brain tissue. Several
different types of treatment are possible depending on the pattern of ultrasound pulses used and the addition
of exogeneous microbubbles. This includes precisely destroying small regions of tissue [1], generating or
suppressing electrical signals in the brain [2], and temporarily opening the blood-brain barrier to allow drugs
to be delivered more effectively [3]. A major challenge for transcranial ultrasound therapies is the presence of
the skull bone, which causes the ultrasound waves to be distorted and attenuated, even at low frequencies [4].
Critically, the skull morphology and acoustic properties vary both within and between individuals, which
leads to undesirable changes in the position and intensity of the ultrasound focus [5,6], and in some cases can
destroy the focus entirely [7].

ar
X

iv
:2

01
0.

15
76

1v
2 

 [
ph

ys
ic

s.
co

m
p-

ph
] 

 1
8 

Ju
n 

20
21



A preprint - June 21, 2021

Using computational ultrasound models and knowledge of the geometric and acoustic properties of the skull
(e.g., derived from an x-ray computed tomography image), it is possible to predict the ultrasound field
inside the brain after propagating through the skull, and thus account for subject-specific dose and targeting
variations [8, 9]. However, existing models based on conventional numerical techniques typically take tens of
minutes to several hours to complete due to the large size of the computational domain compared to the size
of the acoustic wavelength, in some cases generating models with billions of unknowns which require tens of
thousands of iterations to solve [10–14]. This makes them too slow to be used for online calculations and
corrections, i.e., while the subject is undergoing the therapy. Consequently, approximate models are often
used (e.g., ray tracing) which trade off between accuracy and computational efficiency [15,16].
In the current work, instead of using a classical numerical partial differential equation (PDE) solver, a recurrent
neural network architecture is developed to rapidly solve the Helmholtz equation with a heterogeneous sound
speed distribution representative of a human skull. The network is trained using a physics loss term based on
the Helmholtz equation and a training set of idealized sound speed distributions. The use of a physics loss
term, which plays an analogous role to the data consistency term in inverse problems [17, 18], avoids the
need to run a large number of computationally expensive simulations using a conventional solver to generate
training data for supervised training. A review of the relevant background to this approach is described in
the remainder of §1, with the developed network architecture and training outlined in §2. Results are then
given in §3 with discussion and outlook in §4.

1.2 Governing equations

In the most general case, the propagation of ultrasound waves through the skull and brain involves a
heterogeneous distribution of material parameters, shear wave effects in the skull, nonlinear effects when high
intensities are used, and acoustic absorption [11,19]. However, if the ultrasound waves approach the skull
close to normal incidence (this is often the case), then shear motion can be ignored [20]. Moreover, nonlinear
effects are only important for ablative therapies and are restricted to a small region near the focus [21],
and acoustic absorption can be considered a second-order effect [22]. In addition, for many therapeutic
applications, the applied ultrasound signals are at a single frequency and last for many milliseconds or seconds,
which is typically much longer than the time taken for the acoustic field to reach a steady-state, and thus
time-independent models can be used.
Considering the above, a simplified model of wave propagation through the skull and brain can be described
by the heterogeneous Helmholtz equation subject to the Sommerfeld radiation condition at infinity:[

∇2 +
(

ω

c(r)

)2
]
u(r) = ρ(r) , (1)

s.t. lim
|r|→∞

|r|
n−1

2

(
∂

∂|r|
− i ω

c0

)
u(r) = 0 . (2)

Here n is the number of spatial dimensions, c : Rn → R+ is the speed of sound, ω is the angular frequency of
the source, r ∈ Rn is a general space coordinate, ρ : Rn → C is the source distribution, and u(r) ∈ C is the
complex acoustic wavefield. Here, it is assumed that the speed of sound distribution c(r) is heterogeneous in
a bounded region of the domain, while it is uniform and equal to c0 outside of it. In practice, the solution to
Eq. (1) is sought within a domain of interest Ω ⊂ Rn as shown in Fig. (1).
The aim of the current work is to find a learned iterative solver capable of generating a field u which satisfies
Eqs. (1) and (2). We will focus on the 2D version of the Helmholtz problem, keeping in mind that the ultimate
goal is to translate our findings to large three-dimensional simulations. Extensions to 3D and to other wave
equations, e.g., to include the effects of nonlinearity, changes in mass density, and acoustic absorption, will be
considered as part of future work.

1.3 Numerical solution techniques

The Helmholtz equation given in Eq. (1) can be written in the general form

A(c)u = ρ , (3)

where A(c) is a linear forward operator which depends on the speed of sound distribution c. There are many
approaches to discretize A, including finite difference methods [23], boundary element methods [24], and
finite-element methods [25]. In many cases, direct inversion of the forward operator is not feasible due to the
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c(r)

Ω

PML

Figure 1: Definition of the computational domain Ω which contains a heterogeneous sound speed c(r), in this
case represented by a skull. A perfectly matched layer (PML) is used to surround the computational domain
to simulate exterior open boundaries as discussed in Appendix A.

size and conditioning of the problem, and thus iterative schemes are used. In this case, the solution of the
PDE is cast as an optimization problem via a suitable loss function, which is solved using a minimization
algorithm.
The most widely used loss L is the squared norm of the residual ek, which is equivalent to the mean squared
error (MSE) up to a scaling factor. Given the solution uk at iteration k over the domain of interest Ω, this
can be calculated by [26]:

Lk(uk, c, ρ) = ‖ek‖2 =
∫

Ω
|ek|2dr , ek = A(c)uk − ρ . (4)

Other objective functions may also be used depending on the required characteristics of the solution or
the discretization model at hand. Common alternative choices are the root-MSE (RMSE) or the mean
absolute error (MAE). Other examples relevant to the solution of PDEs include using the Dirichlet energy [27],
augmenting the MSE loss with an `∞ term to enforce strong PDE solutions [28], and using physics-constrained
loss functions [29].
Given a suitable discretization and loss function, a common approach to solving the system of equations is the
use of Krylov subspace methods, such as the widely used conjugate gradient (CG) and generalized minimal
residual (GMRES) methods [30]. However, Krylov subspace methods are known to have a slow convergence
rate for the Helmholtz problem [31]. From an intuitive perspective, if the solution starts with an empty
wavefield and a spatially localized source, the nature of the Helmholtz equation makes each update of Krylov
methods local (due to the Laplacian).1 This means the solution will grow slowly from the source position (an
example is shown later in the results section in Fig. 9). However, the solution to the heterogeneous Helmholtz
problem clearly has non-local dependencies, for example, a strong reflector at one end of the domain will
affect the wavefield at the other end.
To mitigate these issues, preconditioning methods can be used. Mathematically, this means finding a suitable
change of basis that reduces the dynamic range of the singular values of the forward operator, which often
leads to the use of a multiscale representation that can take into account long-range dependencies [32,33].
However, finding suitable preconditioning methods for wave problems is a challenging task. Algebraic
methods, such as sweeping preconditioners, are often based on matrix factorization methods that require
instantiating the numerical discretization of the operator [34], which is often prohibitive for spectral methods
that implicitly assume dense matrices.
Standard approaches to adapt multigrid preconditioners for the Helmoltz equation require careful rethinking
of the standard components of multigrid methods, especially for coarse grids. This makes off the shelf
multigrid methods, such as those based on damped Jacobi smoothing, effective only for low wavenumbers [35].
One of the first successful attempts is given in [35], where the authors used GMRES as a smoothing operator
to effectively suppress high-frequency components. While this produced impressive convergence results for
large-wavenumber problems, each iteration is computationally demanding due to the internal iterative solvers

1Krylov methods work by building a sequence of basis vectors vj+1 = ATAvj and finding the optimal solution in
the subspace spanned by this sequence up to the current value of j. Thus the spatial support of the solution can only
increase by the support of ATA on each iteration, which is local for differential operators.
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applied before each restriction operation. This idea was extended in [36] by learning the optimal subspace for
GMRES, instead of relying on the classical Krylov subspace, although results are only shown for parabolic
PDEs.
Other authors proposed to use a shifted-Laplacian preconditioner which can be inverted using multigrid
methods [32]. While effective, the multigrid iteration used for preconditioner inversion is still limited in its
deepest coarse correction by the eigenvalue structure of the preconditioner itself, which is close to the original
Helmholtz operator. Furthermore, convergence analysis and computation of the preconditioner’s inverse is
in most cases performed with a finite-difference discretization [33], often relying on the sparse structure of
the discretized operator to perform efficient computations, which is not applicable to spectral discretizations
that produce much denser matrices. The lack of a sparse structure is also a challenge for incomplete LU
decomposition techniques.
An alternative idea towards improving Krylov-based iterative schemes is given in [37], where Krylov iterations
are interleaved with a UNet [38] that boosts the current solution towards the true one. In [37], the UNet is
trained on known examples, however, training on unlabeled examples using a physics loss is also suggested. A
nice advantage of keeping some Krylov iterations is that they may act as regularizers, preventing the solution
from diverging.
More generally, this leads to the following question: instead of using traditional optimizers to solve Eq. (3), is
it possible to learn a suitable optimizer f that can be iteratively applied to generate an accurate solution in a
small number of iterations, while at the same time being simple enough to be used on large scale problems?
While the general idea of learning an optimizer is not new [39, 40], fully learned optimizers for the Helmholtz
equation have not previously been explored, and the task involves a problem-specific trade-off between speed
(number of iterations) and accuracy (how close we are to the solution).

1.4 Learned optimizers

In the case of the heterogenous Helmholtz equation given in Eq. (1), assuming a fixed angular frequency ω,
an iterative optimization scheme could be written in the form

uk+1 = uk + fθ(uk, c, ρ), (5)

where fθ is a learned function parametrised by the estimate of the wavefield uk after the kth iteration,
the sound speed distribution c (which is used in the forward operator A), and the source distribution ρ.
However, a key problem with this formulation is that it is hard for the network to directly manipulate the
sound speed and source distributions to give an update for u, as they belong to two very different domains.
Although some learning-based methods have been proposed to combine samples from different domains,
such as AUTOMAP [41], it is hard to design a function approximator with the right inductive biases while
preserving the necessary flexibility required for fast inference. This often means that fully connected deep
networks must be used, which are hard to scale to high dimensional input/output pairs and require a large
amount of data to be trained.
Instead of using Eq. (5), we can instead leverage our knowledge of the forward operator to manipulate c and
ρ to get a new input ek, which belongs to the same domain as uk. For example, we could use the residual
signal ek as an input

uk+1 = uk + fθ(uk, ek) , ek = A(c)uk − ρ . (6)
(Other choices are also possible for ek, for example, the derivative of the loss function.) This approach is
in direct parallel to the inputs to many optimization algorithms. However, Eq. (6) still assumes that the
combination of the current wavefield estimate and latest residual gives enough information to the network to
specify the next update. This is unlikely to be true, as for different problems, the same residual could be
observed given the same wavefield. A simple example is for an empty wavefield and a fixed source distribution
ρ, the residual will be the same regardless of the sound speed distribution. If we look at the choice of the
sequence of updates as a Markov decision process (MDP) [42], this makes it only partially observable.
One way to restore the properties of a fully observable MDP is to construct a recurrent belief state h which
contains information from all preceding actions and observations [43]. Augmenting the problem with such a
state can be done via the following update rule:

(∆uk+1, hk+1) = fθ(uk, ek, hk)
uk+1 = uk + ∆uk+1 . (7)
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Figure 2: Schematic of the proposed iterative scheme (showing two iterations) for the solution of the
heterogeneous Helmholtz equation u. This uses a fully-learned optimizer fθ which outputs both the solution
update ∆uk along with a belief state hk. The residual ek is calculated using a physics loss (represented in the
figure by the block res). This is different for every speed of sound distribution and is used as an additional
input to the network. Both the optimizer and the residual calculation make use of knowledge of the perfectly
matched layer (PML). The residual calculation also uses the sound speed c and source distribution ρ through
the forward operator.

Note that the wavefield update resembles a discrete Euler stepping scheme [44]. Augmenting the input with
a hidden state is known to improve the representation capabilities of neural ODEs [45] and it is therefore
reasonable to assume it also helps in their discretized counterpart.
If the function fθ is considered as an iterative solver, the presence of the state variable h allows several
optimizers to be cast in this framework. For example, if h stores the previous gradient and its magnitude, fθ
could in principle work as a quasi-Newton method [39,40], while if it stores the collection of all the previous
residuals, it may generalize Krylov subspace methods.
A learned iterative solver in this framework was proposed by Putzky and Welling [40] for various kinds of
image restoration tasks in which ek was given by the gradient of the loss function (in their case, the log
likelihood for a Gaussian prior). This scheme was later extended by Adler and Oktem [46] for non-linear
operators and applied to a non-linear tomographic inversion problem.

2 Network architecture and training

2.1 Iterative solution to the Helmholtz equation

Building on the work discussed in §1.4, we propose an iterative method in the form of Eq. (7) to solve the
Helmholtz equation using a learned optimizer. The discrete dynamical system that models the iterative
solution uk of the heterogeneous Helmholtz equation given in Eq. (1) can be written as

ek =
[
∇2 +

(ω
c

)2
]
uk − ρ

(∆uk+1, hk+1) = fθ(uk, ek, hk)
uk+1 = uk + ∆uk+1 . (8)

Here fθ is the neural network with learnable parameters θ, ek is the residual computed from the heterogeneous
Helmholtz equation, ∆uk is the iterative update, and hk is a learned hidden or belief state. A diagram
showing two unrolled iterations is given in Fig. 2. The network also uses an auxiliary input of the variable
absorption coefficients that characterize the perfectly matched layer (PML) in each Cartesian direction (the
PML is used as part of the discretized Laplacian operator to mimic the radiation condition in Eq. (2) as
outlined in Appendix A). This allows the network to learn how to dampen the waves at the edges of the
domain to simulate exterior open boundaries, and to appropriately weight the corresponding residuals.
The network is trained using a physics-based loss function. This avoids the need for labeled training data, e.g.
created by running a large number of simulations using a conventional PDE solver to obtain ground truth
solutions. While generating sufficient labeled training data may technically be feasible in 2D, for 3D problems,
running a single simulation can take tens of minutes to many hours [11], which makes the generation of a
large training set practically intractable.
If the total number of iterations is fixed to T (i.e., a finite horizon), one approach for training the network
would be to minimize LT , the final loss calculated after performing T iterations. However, in practice, it is
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Decoding Block (DB)

conv2d conv2d

h
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Figure 3: Architecture of the modified UNet used for the learned optimizer fθ. Each encoding block (EB)
contains two double convolution (DC) layers, one to compute the output passed to subsequent layers, and
one to compute the hidden state h. The concat blocks stack the inputs in the channel dimension. The
network is lightweight, with only 8 channels per convolutional block at every scale and a total of 47k trainable
parameters.

not computationally feasible to perform backpropagation through a large number of iterative steps of the
learned optimizer. The optimal choice of T is also not straightforward, as the accuracy required and the
number of iterations to reach that accuracy are problem specific.
Instead, we choose to minimize the total loss function R across all iterations, which is given by

R =
T∑
k=0

wkLk(uk, c, ρ) , (9)

where Lk is the physics-based loss function calculated after each iteration, and wk ≥ 0 are a set of weights
that define the importance of the loss at each step. Here, the loss from Eq. (4) is used with the residual from
Eq. (8). The weights are set to wk = 1∀ k, in other words, we aim to minimize the loss at every step of the
iteration, on average, which yields

R =
T∑
k=0
‖ek‖2 . (10)

To avoid unrolling the network for a large number of iterations for backpropagation, a replay buffer is used as
discussed in detail in §2.3.
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2.2 Neural network architecture

The neural network architecture for the optimizer fθ is depicted in Fig. 3. The input to the network has the
same spatial dimensions as the sound speed distribution (which is defined on a regularly spaced Cartesian
grid) and contains six channels: two channels for the real and imaginary parts of the wavefield uk, two
channels for the real and imaginary parts of the residual ek, and two channels for the variable absorption
coefficients used in the PML in each Cartesian direction (σ(x) and σ(y) defined in Appendix A).
The core building block of the network is the widely used double-convolution layer, which consists of two
bidimensional convolutions with 3-by-3 kernels, interleaved by a parametrized-ReLU non-linear activation
function [47]. Each encoding block contains two double-convolution layers. The first accepts two inputs: the
network input representation at the current scale and a hidden state. The output is then passed to a second
double-convolution layer (used to update the hidden state), the corresponding decoding block of the network,
and a restriction operator which downsamples the output and feeds it to a deeper layer of the network. The
restriction operator is represented by an 8-by-8 convolutional stage, applied with stride 2 in order to halve
the dimension of the wavefield at each depth, reaching a total of 4 depths.
Internally, each encoding block stores its own hidden state, which from a functional point of view can be
considered as being passed between iterations, as shown in Fig. 2. The size of the hidden state for each
encoding block matches the size of its corresponding input, and has two channels. Note, the state variable hk
in Eq. (8) and Fig. 2 refers to all the states stored across all encoding blocks.
The decoding blocks take an input from the layer below, upsamples it using transposed convolutions with
8-by-8 kernels and stride 2, and after concatenating it with the output from the corresponding encoding
block (i.e., the skip connection), produces an output via another double-convolution layer. Finally, the last
layer of the network is a 1-by-1 convolution that maps the output of the neural network to the wavefield
domain. The output has the same spatial dimensions as the input and contains two channels for the real and
imaginary parts of the wavefield.
There are several intuitions behind this choice of architecture. First, having a fully convolutional network
implicitly imposes some degree of translation invariance to the iterative solver,2 while at the same time allows
the network to be used with arbitrarily-sized sound speed distributions. Second, the network can encode
priors at different scales thanks to the multiscale structure, allowing correction for very local distortions of
the wavefield while at the same time taking care of long range dependencies. This is very similar to the idea
behind the MultiGrid Neural Network (MgNet) [48], which connects UNet-like architectures with the theory
of multiscale solvers, the latter widely used to solve the Helmholtz problem.
In total, the network has approximately 47k trainable parameters, with only 8 channels per convolutional
block at every scale. The very small network size is possible because the solution is iteratively updated using
the residuals of the true forward operator. 3

2.3 Training

The neural network is trained on a dataset of sound speed distributions containing idealized skulls. All
calculations are performed in normalized units with a source frequency of ω = 1 rad/s and a background
sound speed of 1 m/s. The idealized skulls are randomly generated with a hollow convex structure with a
constant thickness and constant speed of sound, defined by summing up several circular harmonics of random
amplitude and phase. Between examples, the skull thickness ranges from 2 to 10 m and the sound speed
from 1.5 to 2 m/s giving a maximum sound speed contrast of 100 % (this matches the sound speed contrast
between soft tissue and human skull bone [49]). The size of each example is 96 × 96 grid points with a
normalized grid spacing of 1 m, giving 2π points per acoustic wavelength (PPW). Note that while the training
is performed using normalized units, the results can be re-scaled for any combination of grid spacing / source
frequency / background sound speed, provided the PPW remains fixed at 2π (an example of simulating a
transcranial ultrasound field within an adult skull at 490 kHz is discussed in Sec. 3.3).
The training set contains 9000 sound speed distributions while both the validation and test sets contain 1000
distributions. Several examples are shown in Fig. 4. As a physics-based loss function is used, the training
data only contains sound speed distributions—no ground truth wavefields (e.g., generated using another PDE

2For example, if ρ and c were shifted upwards by an equal amount, we would expect the solution also to be shifted
upwards by the same amount, i.e., for it to be translationally invariant. Therefore it is desirable for the neural network
architecture to also be translationally invariant.

3Code is publically available at https://github.com/ucl-bug/helmnet
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Figure 4: Examples of the sound speed distributions based on idealized skulls used to train the learned
optimizer. Each skull is created by summing up several circular harmonics of random amplitude and phase,
and then assigned a random thickness between 2 and 10 pixels, and a random sound speed between 1.5 and 2
times the background value.

solver) are required. During training, the source distribution ρ is always fixed to a single grid point with
magnitude 10 at the bottom of the domain.
From a practical point of view, it is not computationally feasible to perform backpropagation through a
large number of iterative steps of the learned optimizer. To overcome this, the network is trained using a
replay buffer and truncated backpropagation through time (TBPTT) [50], where TBPTT is implemented
by unrolling 10 iterations. The replay buffer is initially filled with 600 triplets (c, uk, hk) containing sound
speed distributions randomly selected from the training set. For each sound speed example, the wavefield,
and hidden state are initialized to zero, while the iteration index k is initialized as a random integer between
0 and the maximum number of iterations, in this case set to T = 1000.
During training, at each training step a mini-batch of N triplets (containing examples with a range of different
sound speed distributions and iteration indices) is randomly selected from the buffer. For each triplet, the
loss is calculated over 10 iterative steps using Eq. (4), and the total loss is then summed over the mini-batch,
where

R = 1
N

∑
n

∑
k

Lk(uk,n, cn, ρ) . (11)

Here n ∈ {0, . . . , N − 1} is the triplet index over the mini-batch, k ∈ {kn + 1, . . . , kn + 10} is the iteration
index, and kn is the starting iteration index for the n-th triplet. Finally a gradient descent step is performed
over 10 unrolled iterations to update the network.
The calculation of the loss Lk using Eq. (11) is performed using a Fourier collocation spectral method with a
modified Laplacian that includes a PML. This allows the Sommerfeld radiation condition at infinity to be
approximately satisfied while cropping the domain to a finite size Ω ⊂ R2. The discrete formulation used is
given in Appendix A.
After each training step, for each example in the mini-batch, one of the iterative steps is randomly selected,
and a new triplet (c, uk, hk) is stored back into the buffer replacing the previously selected triplet. For
computational reasons, the residual is also stored alongside the triplet to avoid needing to recalculate this
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when the triplet is later re-drawn from the buffer. During training, if the iteration index of any of the triplets
to be stored back into the buffer exceeds T = 1000, this is replaced with a new sound speed distribution
randomly selected from the training set. The wavefield, hidden state, and iteration index for the new example
are initialized to zero. The full training algorithm is given in Appendix B.
Note, the use of a small window for backpropagation can bias the network towards learning state representations
which have short temporal dependency. While there are techniques for mitigating such bias [51], we didn’t
find this to be a problem in practice. Storing the belief state hk in the replay buffer (rather than re-initializing
it) has also been shown to improve the performance of recurrent networks trained using experience replay [52].
Gradient descent is performed using Adam with a batch size of 32, learning rate of 10−4, and gradient clipping
at 1. The biases of all convolutional layers are initialized to zero to minimize the risk of divergence of the
wavefield in the early iterations. We also don’t store triplets in the buffer if the loss goes above an arbitrary
threshold value of L = 1, as this suggests that the wavefield is diverging. We found this to be especially
important in the early phase of training.
The network and training were implemented using PyTorch and parallelized using PyTorch Lightning [53].
The training was performed using a cluster of 6 NVIDIA Tesla P40 graphics processing units (GPUs) in
parallel. During training, at the end of every 10 epochs, the loss on the validation set was also evaluated, in
this case by summing the loss at the last iteration LT over all examples in the validation set. However, in this
case the source position ρ for each example was moved to a random position on a circle to provide a simple
test of network generalization. Since no input/output pairs were provided during training, inputs and outputs
were scaled by a factor of 103 and 10−3, respectively. These values were hand-tuned to roughly normalize
the variance of the inputs and outputs across all iterations. Similarly, the loss function was amplified by a
factor of 104. The training was run for 1000 epochs (52k training steps), and the network with the lowest
validation loss was selected. The total training time was approximately 21 hours. A summary of the network
and training hyperparameters is given in Appendix C.

3 Results

3.1 Model accuracy against a reference solution for the test set

To evaluate the performance of the trained network, a series of tests were performed. First, the accuracy of
the network for the (unseen) sound speed maps in the test set was evaluated by comparing the wavefields
calculated after 1000 iterations of the learned optimizer against a reference solution. The reference solution
was calculated using the open-source k-Wave acoustics toolbox [54]. To obtain a time-independent solution to
the wave equation, the time-domain solver kspaceFirstOrder2DG was used with a continuous wave sinusoidal
source term, the solution was run to steady state, and the complex wavefield extracted by temporal Fourier
transform. The wavefields were then normalized to an amplitude of 1 and phase of zero at the source location
to account for the different source scaling and relative phase between the two models. The accuracy was
computed using the relative `∞ and average RMSE error norms calculated as

`∞ = ‖upredicted − ureference‖∞
‖ureference‖∞

, RMSE =
√
‖upredicted − ureference‖22

N
, (12)

where N is the total number of pixels in the wavefield. As the learned optimizer and k-Wave use different
formulations for the PML, this region was excluded from the error calculations.
A histogram of the error norms for the 1000 examples in the test set is shown in Fig. 5, with four examples
of the calculated wavefields given in Fig. 6. The predicted wavefields have very low errors compared to the
reference solution, with a mean `∞ error of 0.36%, and mean RMSE of 4.6× 10−4. This demonstrates that
the learned optimizer gives highly accurate results. Although not a focus of the current work, preliminary
benchmarks show the learned model to be at least an order of magnitude faster than k-Wave for the same
level of accuracy.
During the iterative procedure, it is possible to monitor the progression of the solution using metrics based
on the computed residual. Figure 6 gives four examples of the evolution of the residual with iteration number,
and Fig. 8 for all examples in the test set. Typically, a few hundred iterations are needed for the residual
magnitude to reach a minimum. However, while a zero residual indicates convergence to the true solution,
it is not immediately obvious how other values correspond to absolute accuracy. To investigate this, the
evolution of the residual magnitude vs `∞ error with iteration number for the test set is plotted in Fig. 7. In
general, the curves decrease with iteration number, meaning a lower residual magnitude gives a lower `∞
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Figure 5: Errors in the wavefields predicted by the learned optimizer and the generalized minimal residual
(GMRES) method shown as histograms (left and middle) and box plots (right). The errors are compared after
1000 iterations against a reference solution calculated using k-Wave for the 1000 sound speed distributions in
the test set. The plotted RMSE errors are multiplied by 100 to move them to a similar scale. The learned
optimizer is highly accurate, with a mean `∞ error of 0.36%, and mean root mean square error (RMSE) of
4.6× 10−4.

error for a given problem. However, while a high residual magnitude (e.g., 10−3) implies a high error, and a
very low residual (e.g., 2× 10−5) implies a low error, for intermediate values (e.g., 10−4), there is significant
spread. This will be investigated further in future work.
In both Fig. 5 (right panel) and Fig. 7, a small number of outliers can be seen with errors on the order of
a few percent. In general, these outliers had a higher value for the final residual, and the evolution of the
residual often displayed oscillations. Further investigation into these examples demonstrated the presence of
a mode-like structure in the wavefield within and adjacent to the idealized skull, similar to whispering gallery
modes. These examples were also much more difficult for k-Wave to compute, requiring at least twice as
many time steps to reach an approximately steady state. Empirically it seems that examples in which highly
resonant modes are supported take longer to converge, which suggests there may be a connection between
the iterations and the time evolution of the field, as shown in Figs. 9 and 13. The discrepancy between the
mean and median error in the early steps of optimization as shown in Fig. 8 also suggests that there are
some particular sound speed distributions in the test set which are more challenging for the learned optimizer
to solve. Interestingly, the same behavior was not observed for more complex sound speed distributions, e.g.,
based on real skulls.

3.2 Comparison with GMRES

To benchmark against classical methods, we compared the learned iterative solver with the widely used
GMRES method for the sound speed examples in the test set. Figure 5 shows histograms and box plots of
the `∞ and RMSE errors against k-Wave, while Fig. 8 shows the progression of the residual and `∞ against
iteration number. The learned optimizer outperforms the generic solver both in terms of convergence speed
with iteration number, and in terms of accuracy for a given number of iterations. After 200 iterations, the
learned optimizer reaches an average residual magnitude of about 5.6 × 10−5 and `∞ error of 1.0%. In
comparison, GMRES reaches an average residual magnitude of about 5.7× 10−3 and `∞ error of 20.4%. Even
after 1000 iterations (a five-fold increase), GMRES only reaches an average `∞ error of 2.8%.
The difference in the convergence rates can be understood by looking at the evolution of the solution with
iteration number for a representative example as shown in Fig. 9. While both GMRES and the proposed
solver construct the solution from the source location outwards, the spatial extent of the update made at
each step by the two are very different: while GMRES tends to make very local updates (this is due to the
nature of the Krylov iterations using a local forward operator, as discussed in §1.3), the learned iterative
solver updates the solution over much larger spatial ranges.

3.3 Network generalizability

Having established the ability of the learned optimizer to give highly accurate solutions for the sound speed
distributions in the test set, a preliminary investigation was performed into its generalization capabilities
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Figure 6: Four examples of simulations using idealized skull distributions randomly selected from the test set
(insets shown top left). In each case, the reference solution is computed using k-Wave and shows very close
agreement with the prediction using the learned optimizer (the real part of the wavefield is shown). For these
examples, the `∞ error reaches a minimum within 200 iterations. The convergence of GMRES is also shown
for comparison: we reset the Krylov subspace every 10 iterations.
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Figure 7: Trajectories showing the evolution of the `∞ error against the residual loss for the 1000 sound
speed distributions in the test set. The `∞ error is calculated by comparison with k-Wave, and the residual is
calculated using a physics loss term. The dashed and solid lines indicate the mean and the median of all
traces, respectively.
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Figure 8: Progression of the optimization problem with the number of iterations for the learned optimizer
(black) and the generalized minimal residual (GMRES) method (orange) for the 1000 sound speed distributions
in the test set. The dashed and solid lines indicate the mean and the median of the individual traces,
respectively. (left) Magnitude of the residual. (right) `∞ error compared to k-Wave.
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(a) Generalized minimal residual (GMRES) method.

(b) Learned optimizer.

Figure 9: Evolution of the solution after 10, 20, 50, 100, and 250 iterations for GMRES and the learned
optimizer for a sound speed distribution from the test set (the real part of the wavefield is shown). The
results for GMRES demonstrate the local nature of Krylov iterations based on the Helmholtz operator, which
build the solution from the source location outwards. The results for the learned optimizer show a similar
dynamic, but the updates cover the global domain much more rapidly.
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Figure 10: Simulation using a large rectangular heterogeneity (inset top left) which has a shape unlike the
speed of sound distributions seen during training. The reference solution is computed using k-Wave and
shows very close agreement with the prediction using the learned optimizer (the real part of the wavefield is
shown). The relative `∞ error against the reference solution takes approximately 70 iterations to reach 1% .

to solve previously unseen problems. Similar performance was also observed on a range of other examples
analogous to the ones described below.
First, we evaluated the model on a speed of sound distribution containing a rectangular region with a speed
of sound of 2, to test the ability of the network to deal with large homogeneous speed of sound regions (recall
during training that only idealized skull shapes were used). Figure 10 shows the reference solution calculated
using k-Wave, the prediction using the learned optimizer, and the evolution of the error with iteration number.
For this example, the learned model reaches a very small final error on the order of 0.2%, and reaches an
error below 1% extremely quickly (about 70 iterations).
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Figure 11: Test on a spatial domain much larger than that seen during training. The sound speed distribution
is created by patching together 24 idealized skull distributions from the test set (inset top left). The reference
solution is computed using k-Wave and shows very close agreement with the prediction using the learned
optimizer, with errors well below 1% (the real part of the wavefield is shown). The relative `∞ error against
the reference solution takes approximately 600 iterations to reach 1%.
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Second, we tested the ability of the network to generalize to larger domains. A large speed of sound distribution
with 480 × 480 grid points was created by patching together 24 distributions from the test set. Figure 11
shows the reference solution calculated using k-Wave, the prediction using the learned optimizer, and the
evolution of the error with iteration number. Despite all the sound speed distributions in the training and
validation sets having 96 × 96 grid points, the model is able to generalize to a much larger domain, reaching
1% error within 600 steps. This suggests that the hard task of training on large 3D volumes containing whole
skulls for clinical applications can possibly be entirely bypassed by learning the network weights using much
simpler and smaller problems, for example, by training using small skull patches.
Finally, while the previous example suggests that the network is able to generalize to different domain sizes,
it is unclear how much diversity in the training set is required to ensure that the network still converges
to a satisfactory solution with an arbitrary sound speed or source distribution. To test this, we performed
a representative simulation of the intracranial wavefield for a transcranial focused ultrasound stimulation
experiment [9]. We used a large 512 × 512 speed of sound distribution generated from a transverse CT slice
from an adult skull from the Qure.ai CQ500 Dataset [55] converted using the approach outlined in [8]. The
source distribution was defined as a focused transducer represented by a 1D arc [56] (recall that the network
has only seen single-point sources in a fixed position during training). The transducer aperture diameter and
radius of curvature were set to 60 mm, and the source frequency to 490 kHz. We also recall that, due to the
linearity of the Helmholtz equation, the wavefield resulting from an arbitrary source distribution can always
be decomposed into the sum of wavefields produced by point sources. Therefore it is always possible to run
the algorithm in parallel for a set of point-like source maps by decomposing the total source field, with the
added benefit of decoupling the effect of each source on the total wavefield.
Figure 12 shows the reference solution calculated using k-Wave, the prediction using the learned optimizer,
and the evolution of the error with iteration number. Despite this example being well outside the training
set (including a much larger spatial domain, a more complex speed of sound distribution, and a distributed
source in an unseen position), the relative `∞ error compared to k-Wave is very low at 0.8%. This shows that
the trained model can be used to solve problems of the scale and complexity needed to make the clinical
problem tractable, albeit currently in 2D.
The evolution of the solution shown in Fig. 12 with iteration number is shown in Fig. 13. The solution is
constructed from the arc-shaped source outwards. While it takes approximately three thousand iterations for
the `∞ error across the whole domain to reach a minimum, most of the complex structure in the field can
be seen after just 200 iterations. Moreover, the position of the focus and the focal pressure (which are not
strongly affected by reverberation within the skull for this example) converge extremely quickly, within just
20 iterations. For the purpose of real-time treatment planning (for example, where several candidate positions
for the ultrasound transducer may be being evaluated), the ability to generate a reasonable approximation
for the acoustic field around the focus in a very short time, which can then be improved by letting the model
continue to iterate, is highly desirable. (See Supplementary Material for an example.)

4 Summary and discussion

A lightweight neural network based on a modified UNet is proposed as a fully learned iterative optimizer and
used to solve the heterogeneous Helmholtz equation. The network architecture is motivated by multi-scale
solvers which utilize multi-scale memory, and Markov decision processes that utilize a belief state to make
them fully observable. The network is trained using a physics-based loss function: no explicit knowledge of
the true solution is given beyond the implicit consistency with the known source and sound speed.
The training set consists of idealized skulls in a small domain with 96 × 96 grid points, which makes training
time manageable (less than one day using 6 GPUs). The learned optimizer shows excellent performance on
the test set, and is capable of generalization well outside the training set, including to much larger domains,
more complex sound speed distributions, and more complex source distributions.
In the current work, the network is used to solve the lossless Helmholtz equation in 2D. In future, we will
look to extend this to 3D, and to include the effects of changes in mass density, acoustic absorption, and
potentially the effects of acoustic nonlinearity. The examples given in §3.3 suggest that the model weights
could be trained on small 3D patches, which will be essential to make the training tractable.
The neural network has not been constrained in any way and therefore it is hard to state any a priori
guarantees on its convergence. In general, the convergence of repeatedly applying neural networks with
weight-tying is still an open problem (see [57]). However, the network could be constructed in such a way
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Figure 12: Simulation of a transcranial ultrasound field using a sound speed distribution generated from a
clinical x-ray computed tomography (CT) slice (inset top left). The reference solution (top left) is computed
using k-Wave and shows very close agreement with the prediction using the learned optimizer (top right),
with errors below 1% (bottom left). The absolute value of the complex wavefield is shown. The `∞ error
takes approximately 3000 iterations of the optimizer to reach a minimum (bottom right).

16



A preprint - June 21, 2021

Figure 13: Evolution of the wavefield predicted by the learned optimizer for different iteration numbers for the
transcranial ultrasound example given in Fig. 12. The position of the focus and the focal pressure converge
with 20 iterations, and most of the complex structure in the field can be seen after just 200 iterations. Note,
the colormap of each subpanel is normalized by its own maximum.
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to ensure at least convergence, for example, by taking optimal step-sizes. Regarding convergence speed,
standard iterative solvers often rely on some form of preconditioning to achieve convergence in a small number
of iterations. Preconditioners could also be used to enhance the performance of learned solvers, either by
applying them at the residual calculation stage or by using them to improve the spectral properties of the
physics loss.
One challenge in the formulation that may need addressing is the limited number of unrolling steps used in
the training phase. While a replay buffer has proven useful to extend the training horizon well beyond this
limit, it may still induce biases or unwanted phenomena such as state representation drift [52]. This could
be mitigated by borrowing ideas from the reinforcement learning community, which often deals with large
or even infinite horizon tasks. In particular, Q-learning methods [58], such as temporal difference learning,
can theoretically take into account the entire sequence of possible future states when providing the loss for
a given output, by estimating the future loss. Furthermore, as they are designed to work with externally
given reward signals, the loss function on which the network is trained doesn’t need to be differentiable. This
makes it possible to use more elaborate training strategies, such as imposing a monotonically decreasing
residual norm during inference.
Since we are mostly interested in the solution in a restricted region of space, such as the brain for transcranial
applications, an interesting extension of the method would be to include a spatial estimate of the uncertainty
of the solution at each step [29]. While being useful in and of itself, this may also allow the design of training
procedures where the network focuses on solving the problem in the spatial region of interest.
In our experiments, the complexity of the network was kept very low by using a small number of parameters,
and this is partially responsible for the good generalization performance. On the one hand, having a
small number of parameters reduces the capacity of the network and as a consequence the speed at which a
problem is solved. Conversely, having a large number of parameters may overspecialize the network on the
distribution of problems encountered in training, which may require a more diverse training dataset to restore
its generalization capabilities. Furthermore, the validation loss exhibits large oscillations throughout training,
making evaluation and checkpointing of the network parameters subject to a low validation loss a crucial part
of the training process. Lastly, the neural network was trained with a fixed frequency relative to the grid
spacing (i.e., a fixed number of points per wavelength in the background medium). Therefore it is applicable to
all problems as long as the spatial discretization is chosen to satisfy this constraint. For arbitrary frequencies
(or, equivalently, grid resolutions) the network currently needs to be retrained or fine-tuned. However this
requirement may be relaxed in the future by training the solver on a suitable range of frequencies. While this
may reduce the performance of the resulting network, it could also act to regularize the network and allow
training larger networks. As part of future work, we will aim to understand and disentangle the effect of
dataset diversity, network complexity, training strategies , and the generalization properties of the network.
Lastly, although the neural network solver already provides an advantage over many standard numerical
methods by being fully differentiable, the computational performance of the network still needs to be properly
assessed. In particular, profiling and optimization of the deployed network, and a comparison to more
widespread solving procedures including a measure of their scaling properties for different problem sizes
are required. While there may be several small design ideas that can be used to reduce the computational
complexity of the network, such as learning the Laplacian operator [59] rather than evaluating it using
spectral methods, a fair comparison will require a careful implementation of the method.
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A Discrete solution of the forward operator

The calculation of the residual in Eq. (8) and the loss function in Eq. (11) require the discretization of the heterogeneous
Helmholtz equation in Eq. (1). To allow the Sommerfeld radiation condition at infinity to be approximately satisfied
while cropping the domain to a finite size Ω ⊂ R2, a perfectly matched layer or PML is used as defined in [25].
Assuming the original bounded domain is rectangular with size 2Lx by 2Ly, the domain is extended to a size of
2(Lx + ∆L) by 2(Ly + ∆L), where ∆L is the thickness of the PML on each side of the domain (see Fig. 1). The
derivative operators are then transformed to introduce absorption within the extended part of the domain:

∂

∂η
→ 1

γη

∂

∂η
, (13)

where η = x, y and

γη =

{ 1, if |η| < Lη

1 + j

ω
σ(x), if Lη ≤ |η| < Lη + ∆L .

(14)

The absorption profile σ grows quadratically within the perfectly matched layer according to [25]

σ(η) = σmax

(
1− η

L

)2
. (15)

The Laplacian including the PML then becomes

∇̂2 = 1
γx

∂

∂x

(
1
γx

∂

∂x

)
+ 1
γy

∂

∂y

(
1
γy

∂

∂y

)
=
∑
η=x,y

[
1
γ2
η

∂2

∂η2 −
γ′η
γ3
η

∂

∂η

]
, (16)

where γ′η = ∂
∂η
γη, which is computed analytically. To discretize Eq. (16), the Fourier collocation spectral method is

used [60], where
d

dη
f(η) = F−1

η {ikηFη {f(η)}} . (17)

Here kη are the wavenumbers in the η-direction (see e.g., [60]), and F and F−1 represent the forward and inverse
Fourier transform, in this case computed using the fast Fourier transform (FFT). Finally, this gives

∇̂2f(x, y) =
∑
η=x,y

[
1
γ2
η
F−1
η

{
(−k2

η)Fη {f(x, y)}
}
−
γ′η
γ3
η
F−1
η {(ikη)Fη {f(x, y)}}

]
. (18)

For a numerical calculations presented in the current work, the PML size ∆L is set to 8, and the absorption parameter
σmax is set to 2.
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B Training algorithm

The algorithm used for training is given in Algorithm. 1

Algorithm 1: Training procedure
Data: Train set C, Validation set V, source ρ, buffer size Ns, maximum iteration T , unrolling steps t,

batch size Nb
/* Initialize replay buffer */

1 for n ∈ [1, . . . , Ns] do
2 k ∼ U(0, T − 1)
3 c ∼ C
4 Initialize uk, hk with zeros
5 Store (c, uk, hk) in the buffer B

/* Training loop */
6 V̂ ←∞ // Initialize best validation loss to infinity
7 for epoch ∈ {1, . . . , Nepochs} do

/* Train network for a single epoch */
8 for step ∈ {1, . . . , Nsteps} do
9 Sample a batch of Nb triplets (c, uk, hk) from B

/* For each triplet */
10 for n ∈ {1, . . . , Nb} do

/* Unroll t steps */
11 for i ∈ {k + 1, . . . , k + t} do
12 ei−1 ← A(c)ui−1 − ρ
13 ui ← ui−1 + fθ(ui−1, ei−1, hi−1)
14 Ln =

∑
i Li,n // Estimate the loss over t steps

15
/* Update replay buffer */

16 i ∼ U(k + 1, k + t) // Sample one of the t iterations
17 if i < T then
18 Store (c, ui, hi) in the buffer B in place of its original triplet
19 else
20 c ∼ C
21 Initialize u0, h0 with zeros
22 Store (c, u0, h0) in the buffer B in place of its original triplet

23 R← 1
Nb

∑
n Ln // Estimate the loss over t steps

24 θ ← SGD(θ,∇θR) // Update parameters via gradient descent
/* Evaluate the network on the validation set every 10 epochs */

25 if mod(epoch, 10) = 0 then
26 Lval ← 0
27 for every c ∈ V do
28 Initialize u0, h0 with zeros
29 Initialize the source map ρ with a point source at a random position
30 for i ∈ {1, . . . , T} do
31 ei−1 ← A(c)ui−1 − ρ
32 ui ← ui−1 + fθ(ui−1, ei−1, hi−1)
33 L← LT,n // Estimate the loss at the last iteration
34 Lval ← Lval + L // Add to the total loss over the validation set

35 if Lval < V̂ then
36 V̂ ← Lval
37 Save the current network parameters θ
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C Model and training hyperparameters

A summary of the hyperparameters used in the network and for training is given in Tables 1 and 2. All the
convolutional layers were initialized using the Xavier method with gain 0.02 [61].

Table 1: Model hyperparameters
Parameter Value
activation function PReLU
depth 4
channels per layer 8
channels per state 2

Table 2: Training hyperparameters
Parameter Value
batch size 32
buffer size 600
gradient clipping 1
learning rate 10−4

weight decay 10−6

window size for TBPTT 10
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