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ABSTRACT

We present an open-source differentiable acoustic simulator, j-Wave, which can solve time-varying
and time-harmonic acoustic problems. It supports automatic differentiation, which is a program
transformation technique that has many applications, especially in machine learning and scientific
computing. j-Wave is composed of modular components that can be easily customized and reused.
At the same time, it is compatible with some of the most popular machine learning libraries, such as
JAX and TensorFlow. The accuracy of the simulation results for known configurations is evaluated
against the widely used k-Wave toolbox and a cohort of acoustic simulation software. j-Wave is
available from https://github.com/ucl-bug/jwave.

Keywords differentiable simulator · acoustics · machine learning · gpu acceleration · wave equation · Helmholtz
equation · jax

1 Motivation and significance

1.1 Background

The accurate simulation of wave phenomena has many interesting applications, from medical physics to seismology
and electromagnetics, with the aim of either forecasting, for example, predicting an ultrasound field inside the brain
[1], or performing parametric inference, for example, recovering material properties from acoustic measurements
using full wave inversion [2]. Many numerical techniques for solving the wave equation have been developed over the
years, including pseudospectral algorithms [3], finite differences [4, 5], angular spectrum methods [6] and boundary
element methods [7], to name a few.

Recently, there has been a growing body of research at the intersection of numerical simulation and machine learning
[8, 9, 10]. The critical observation is that the machine learning community has developed many tools and techniques
for high-dimensional inference. In particular, automatic differentiation, the class of algorithms often employed for
neural network training and generally for automatic analytical gradient estimation, can be used to differentiate for
any continuous parameter involved in a simulator [11, 12]. This enables optimization or parameter identification
of all simulator parameters, including the simulated field and other parameters that appear in the governing partial
differential equation (PDE), as well as numerical parameters such as the finite difference stencil used to compute
gradients.
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Simulators that allow for automatic differentiation can also be used inside a machine learning model. Examples in-
clude implementing implicit layers [13], reinforcement learning [14, 15], parameter identification [16], inverse prob-
lems [17], optimal control [18], construction of physics-based loss functions [19, 18, 20], and research into novel
discretizations or neural network augmented simulators [21].

1.2 Aim

Here we present j-Wave: a customizable Python simulator, written on top of the JAX library [12] and the discretization
framework JaxDF [22], for fast, parallelizable, and differentiable acoustic simulations. j-Wave solves both time-
varying and time-harmonic forms of the wave equation with support for multiple discretizations, including finite
differences and Fourier spectral methods. Custom discretizations, including those based on neural networks, can also
be utilized via the JaxDF framework. The use of the JAX library gives direct support for program transformations, such
as automatic differentiation, Single-Program Multiple-Data (SPMD) parallelism, and just-in-time compilation. Lastly,
since j-Wave is written in a language that follows the NumPy [23] syntax, it is easy to adapt, enhance or re-implement
any simulator stage.

1.3 Related software

There is a range of related software that can be used to simulate acoustic fields, and that can be used as an alternative
or to complement j-Wave. In the Julia language, the SciML ecosystem has a variety of tools that can be used to
construct differentiable acoustic simulators [9]. In particular, the ADSeismic.jl [24] library focuses on seismic wave
propagation and several inversion algorithms commonly used in the seismic field, and also includes the support for
neural network representation of velocity models [25]. In Python, the Devito package [26] and the recently published
Stride [27] library can be used to solve acoustic optimisation problems that scale over large super computing clusters,
while SimPEG [28] can be used for geophysical parameter estimation. In JAX, several recent works have developed
tools for simulation-based inference and differentiable simulations. These range from integrating JAX with FEniCS
for finite elements simulations [29], to differentiable molecular dynamics [30] and fluid dynamics [31].

2 Software description

2.1 Governing equations

j-Wave solves two different forms of the wave equation for time-varying and time-harmonic (i.e., single frequency)
problems. For time-varying problems, j-Wave solves a linear system of coupled first-order PDEs that represent the
conservation of mass and momentum, and a pressure density relation [32]:

∂u

∂t
= − 1

ρ0
∇p (1)

∂ρ

∂t
= −ρ0∇ · u+ SM (2)

p = c20ρ . (3)

Here u is the acoustic particle velocity, p is the acoustic pressure, and ρ is the acoustic density. The acoustic medium
is characterized by a spatially varying background density ρ0 and sound speed c0. The term SM represents a mass
source field.

For time-harmonic simulations, j-Wave solves a form of the Helmholtz equation constructed from the second-order
wave equation including Stokes absorption:

1

c20

∂2p

∂t2
= ∇2p− 1

ρ0
∇ρ0 · ∇p+

2α0

c0

∂3p

∂t3
+
∂SM
∂t

(4)

A time-harmonic solution is obtained by substituting p = Pe−iωt, where ω is frequency in units of rad·s−1, giving

−ω
2

c20
P = ∇2P − 1

ρ0
∇ρ0 · ∇P +

2iω3α0

c0
P − iωSM . (5)

This equation accounts for acoustic absorption of the form α = α0ω
2, where the absorption coefficient prefactor α0

has units of Np(rad/s)−2m−1.
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2.2 Numerical methods

Solvers for the two governing equations given in Sec. 2.1 are constructed using JaxDF [22]. This is a discretization
framework that decouples the mathematical definition of the problem from the underlying discretization. Currently,
implementations of the differential operators are available for spectral and finite difference discretizations on a regular
Cartesian grid. Alternatively, the user can provide a custom discretization compatible with the underlying operations
required by the PDEs. That is, only linear discretizations are compatible with time-stepping and Krylov solvers, while
non-linear discretizations can be used as physics informed models [10, 9].

For time-varying problems, the wave equation is solved by integrating the first-order system of equations with a semi-
implicit first-order Euler integrator. If a spectral or finite difference discretization is used, the fields are defined on a
staggered grid to improve long-range accuracy [33] and avoid checker-board artifacts. Radiating boundary conditions
are enforced by embedding the effect of a split-field perfectly matched layer (PML) on the time-stepping scheme [3].
When using a Fourier discretisation, j-Wave is equivalent to the implementation in the open-source k-Wave toolbox
[33, 32], including the use of a dispersion-corrected finite difference scheme for time integration. The user can further
specify a generic measurement operator f(u, ρ, p) to extract instantaneous values from the wavefield at each time step.

For time-harmonic problems, if the underlying discretization of the Helmholtz operator is linear (for example, using
Fourier or finite difference methods), the solver is a special case of linear inversion. In this case, j-Wave uses either
GMRES or Bi-CGSTAB to compute the solution. These are matrix-free methods, meaning that the numerical matrix
that represents the linear operator is never explicitly constructed. Again, radiating boundary conditions are imposed
using a PML, by modifying the spatial gradients as in [34]:

∂

∂x
→ 1

γx

∂

∂x
(6)

where

γx(x) =

{
1, if |x| < a

1 + i
ωσ(x) if a ≤ |x| , (7)

and σ follows a power-law profile.

2.3 JAX and automatic differentiation

The fundamental idea of j-Wave is to provide a suite of differentiable, parallelizable and customizable acoustic simu-
lators. These requirements are accomplished, in first instance, by writing the simulator in JAX [12], which provides a
growing suite of tools for large-scale differentiable computations, including flexible AD, single-device parallelization,
multi-device parallelization, and just-in-time compilation [35]. Furthermore, JAX can be considered an adaptable
Python compiler that translates and transforms code. This allowed us to define a series of custom classes that can be
overwritten or adapted by the user, while still being amendable of transformation.

All forward operators and simulation functions in j-Wave are differentiable through the use of JaxDF using both
forward and backward automatic differentiation (AD). This allows the user to obtain gradients for any continuous
parameter in the model. This includes both physical parameters, such as the acoustic pressure or sound speed, and
numerical parameters, such as the stencils for finite differences or the filters used in Fourier methods. The gradient
rules used for computation can also be freely customized.

Solving a linear system, such as the discretized Helmholtz equation, using an iterative solver is also beneficial for gra-
dient calculation. JAX takes advantage of the implicit function theorem to differentiate through fixed-point algorithms
with O(1) memory requirements (that is, the intermediate steps of the iterative solver are not stored to compute the
gradient). This is a major advantage when gradients of large-scale simulations are needed. See [36] and references
therein for a recent discussion of this topic.

2.4 Software architecture

The architecture of j-Wave can be divided into three main kinds of components: objects, operators, and solvers.

Objects: Objects are variables that contain the numerical data that is used during the simulations. They are defined
as classes registered to the JAX compiler as a custom pytree node. The primary objects are:

• Domain: Defines a regular Cartesian grid with the specified grid spacing and number of points.

Gradients obtained using reverse-mode AD have been shown to be equivalent to the ones obtained using the adjoint-state model
[24].
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FiniteDifferences FourierSeries Absolute error (%)
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Figure 1: Comparison of the fields produced by j-Wave using 8th order accurate FiniteDifferences and
FourierSeries representations on an initial value problem.

• Medium: Defines the sound_speed and density represented on the specified domain along with the
pml_size.

• Sources: Defines the positions and signals for time varying mass sources within the specified
domain.

• Sensors: Defines the positions of detectors placed on the grid.
• TimeAxis: Defines the time steps used for time-varying simulations.

Objects can be used as input variables to any JAX function and gradients can be taken with respect to
their continuous parameters. They can be unpacked into their constituent numpy-like arrays using the
jax.tree_util.tree_flatten utility and constructed inside pure functions.
Some parameters are defined as Field objects from JaxDF which define underlying discretizations. This
includes medium.sound_speed and the initial conditions p0 and u0. The discretization used for the input
objects governs the discretization used during the calculations. Currently, JaxDF supports FourierSeries,
FiniteDifferences and Continuous discretizations. However, it is straightforward to define custom field
discretizations which are automatically compiled into their corresponding numerical implementations.

Operators: Operators are defined via JaxDF and implement a numerical algorithm that translates a symbolic operator
into its corresponding numerical implementation, for a given type of input discretization. The implementation
of the same operator for different discretizations is done using multiple-dispatch via plum [37], a program-
ming technique that has been heavily popularized by C#, Lisp and Julia [38], using the operator decorator
of JaxDF.
For example, a custom Laplacian operator for a 1D FiniteDifferences field can be implemented using
type hints.

1@operator
2def laplacian(u: FiniteDifferences , params =[1, -2, 1]):
3k = params
4_u = u.on_grid
5_u = jnp.pad(_u, (1,1), ’constant ’, 0)
6v = k[0]*_u[:-2] + k[1]*_u[1:-1] + k[0]*_u[2:]
7return u.replace_params(v), params

Every function that uses the laplacian function will then utilize the custom user implementation if the input
field is of the type FiniteDifferences.

Solvers: There are two main solvers in j-Wave which solve the equations outlined in Sec. 2.1. These are also imple-
mented as operators for convenience.

• simulate wave propagation: Takes a medium object (which internally defines the Domain), along
with Sources, Sensors, and TimeAxis objects, and initial conditions p0 and u0 if non-zero, and
computes the time varying acoustic field over the specified domain.

• helmholtz solver: Takes a medium object (which internally defines the Domain), source field, and
frequency omega and computes the complex field over the specified domain. The source field for the
helmholtz solver is a Field defined over the entire domain, and can be extracted from Sources
objects.
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j-Wave k-Wave Absolute Error
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Figure 2: Comparison of the field amplitudes predicted by j-Wave and k-Wave for a focused transducer after propaga-
tion through an aberrating skull layer. Adapted from [1].

Simulations using these functions can be performed on CPU, GPUs, and TPUs, with efficient just-in-time
compilation, natively compatible with the JAX ecosystem. The functions are also amendable to same-device
or multiple-devices parallelization, via the JAX decorators vmap and pmap [12]. Check-pointing can also be
applied at each step to reduce the memory requirements for back-propagation.

2.5 Accuracy

The accuracy of the pseudo-spectral and finite difference solvers has been evaluated both for time-varying and for
time-harmonic problems. In the first case, the pseudo-spectral numerical solver is equivalent to k-Wave [33, 32] and
numerical simulations agree to machine precision. When finite difference methods are employed, the simulation error
is dependent on many factors, other than the implementation itself, such as number of grid points per wavelength, the
finite difference coefficients, etc. An illustrative comparison of the wavefields produced for an initial value problem in
a medium with a heterogeneous sound speed is shown in Fig. 1.

For the Helmholtz equation, a comprehensive comparison of j-Wave against other wave models (including k-Wave)
was conducted as part of the inter-comparison effort described in [1]. For homogeneous material properties, the
maximum difference against k-Wave is typically much less than 1%. For heterogeneous properties, the difference
depends on which parameters are heterogeneous and the strength of the heterogeneity. Differences are slightly larger
for a heterogeneous density (compared to heterogeneous sound speed or absorption). This is likely due to the different
way the ambient density term is treated and evaluated on a staggered grid between the two softwares. A representative
example showing results for a 3D simulation using j-Wave and k-Wave is given in Fig. 2. This example includes a
bone layer with an incident field produced by a focused transducer driven at 500kHz (Benchmark 7 of [1]). In this
case, the difference between the two simulations inside the brain is within 3%.

3 Illustrative Examples

3.1 Initial value problems and image reconstruction using time reversal

To demonstrate the process of defining and running a simulation using j-Wave, we start with a simple initial value
problem in a homogeneous medium as encountered in, e.g., photoacoustics [39]. Similarly to k-Wave [33], j-Wave
requires the user to specify a computational domain where the simulation takes place. This is done using the Domain
data class inherited from JaxDF as shown in Listing 1. The inputs for the constructor are the size of the domain in grid
points in each spatial direction and the corresponding discretization step.
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1from jwave.geometry import Domain
2

3N, dx = (128, 128), (0.1e-3, 0.1e-3)
4domain = Domain(N, dx)

Listing 1: Defining the simulation domain.

The next step is to define the medium properties. This is done using the Medium class as shown in Listing 2.
1from jwave.geometry import Medium
2

3medium = Medium(domain=domain , sound_speed =1500.0)

Listing 2: Defining the medium properties.

For time-varying problems, a TimeAxis object also needs to be defined, which sets the time steps used in the time-
stepping scheme of the numerical simulation. This object can be constructed from the medium for a given Courant-
Friedrichs-Lewy (CFL) number as shown in Listing 3 to ensure that the time-stepping scheme is stable

1from jwave.geometry import TimeAxis
2

3time_axis = TimeAxis.from_medium(medium , cfl =0.3)

Listing 3: Defining the time axis.

The next optional step is to define a Sensors object. This is done using the Sensors class as shown in Listing 4,
which defines the grid points within the domain where the field values are returned (custom sensor definitions can also
be used). If no sensors are defined, the code returns a Field for each time-step.

1from jwave.geometry import _points_on_circle , Sensors
2

3num_sensors , radius , center = 32, 40, (64, 64)
4x, y = _points_on_circle(num_sensors , radius , center)
5sensors = Sensors(positions =(jnp.array(x), jnp.array(y)))

Listing 4: Defining sensors.

Finally, the initial pressure distribution must be defined. This is done by populating a jax.numpy.ndarray the same
size as the domain, and then passing this to the appropriate discretization. In Listing 5, the initial pressure is set to the
weighted sum of four binary disks and defined as a FourierSeries field. The field information is used when calling
operators to choose the correct numerical implementations. The simulation setup is depicted in Fig. 3 (a).

1from jwave.geometry import _circ_mask
2from jwave import FourierSeries
3

4mask1 = _circ_mask(N, 8, (50 ,50))
5mask2 = _circ_mask(N, 5, (80 ,60))
6mask3 = _circ_mask(N, 10, (64 ,64))
7mask4 = _circ_mask(N, 30, (64 ,64))
8p0 = 5.* mask1 + 3.* mask2 + 4.* mask3 + 0.5* mask4
9p0 = FourierSeries(p0, domain)

Listing 5: Defining the initial pressure distribution as a Fourier series Field.

To run the simulation, the solver simulate wave propagation is called with the appropriate inputs as shown in
Listing 6. Here, a wrapper is defined around it, to highlight how to create arbitrary callables that are just-in-time
compiled using jax.jit. The recorded acoustic signals are shown in Fig. 3 (b).
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1from jwave.acoustics import simulate_wave_propagation
2

3@jit
4def compiled_simulator(medium , p0):
5return simulate_wave_propagation(
6medium , time_axis , p0=p0 , sensors=sensors)
7

8sensors_data = compiled_simulator(medium , p0)

Listing 6: Just-in-time compiling and running the simulation.

3.2 Automatic differentiation

As mentioned, gradients can be evaluated with respect to any input parameters: all that is needed is to define a scalar
loss function. In Listing 7, the use of the wave equation adjoint as a simple imaging algorithm for the forward problem
defined in Sec. 3.1 is demonstrated following the discretize-then-optimize approach [40, 9]. Note that the user can
always define a custom adjoint function for the forward operator if required.

Gradients for the initial pressure alone can be easily computed by wrapping a new function around the simulator and
using the jax.grad decorator. In this example, noise is added to the data before inverting the model.

1def solver(p0):
2return simulate_wave_propagation(
3medium , time_axis , p0=p0 , sensors=sensors)
4

5@jit # Compile the whole algorithm
6def lazy_imaging_algorithm(measurements):
7# Mask out elements outside the sensors ring
8mask = _circ_mask(N, 39, (64, 64))
9mask = np.expand_dims(mask , -1)
10

11def mse_loss(p0 , measurements):
12p0 = p0.replace_params(p0.params * mask)
13p_pred = solver(p0)
14return 0.5 * jnp.sum(( p_pred - measurements)**2)
15

16# Start from an empty field
17p0 = FourierSeries.empty(domain)
18# Take the gradient
19p_grad = grad(mse_loss)(p0, measurements)
20return -p_grad
21

22# Reconstruct initial pressure distribution
23recon_image = lazy_time_reversal(noisy_data)

Listing 7: Use of the adjoint model as a simple imaging algorithm.

The reconstructed initial pressure is shown in Fig. 3 (c).
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Figure 3: Example of workflow to simulate an initial value problem and invert it using automatic differentiation. From
left to right: Simulation setup; Recorded acoustic signals with additive colored noise; Reconstructed initial pressure
distribution from noisy data.

3.3 Prototyping full-wave inversion algorithms

1from jwave.signal_processing import analytic_signal
2

3def loss_func(params , source_num):
4# This contains the simulator function
5p = single_source_simulation(get_sound_speed(params), source_num)
6

7# Get envelopes of data and simulated signals
8p = jnp.abs(analytic_signal(p, 0))
9pred = jnp.abs(analytic_signal(p_data[source_num], 0))
10

11# MSE on envelopes
12return jnp.sum(jnp.abs(p - pred)**2)
13

14loss_with_grad = jax.value_and_grad(loss_func)

Listing 8: Defining an objective function for full-wave inversion.

One of the most exciting features of j-Wave is its (almost) total differentiability. Besides applications in machine
learning, differentiability means that full waveform inversion methods can be easily prototyped. For example, to
mitigate cycle skipping it has been proposed to use an `2 loss on the modulus of the complex analytic signal associated
with the data residual [41, 42]. This can be implemented by defining an appropriate objective function as shown in
Listing 8.

1@jax.jit
2def update(opt_state , key , k):
3v = get_params(opt_state)
4src_num = random.choice(key , num_sources)
5

6loss_with_grad = jax.value_and_grad(loss_func , argnums =0)
7lossval , gradient = loss_with_grad(v, src_num)
8

9gradient = smooth_fun(gradient)
10return lossval , update_fun(k, gradient , opt_state)

Listing 9: Gradient descent using AD.

Because it is possible to differentiate through arbitrary computations, evaluating the gradient of this expression is done
using backward-mode AD. Low-pass filtering of the FWI speed of sound gradients can also be used to improve the
convergence towards the true speed of sound distribution [43]. Again, we can seamlessly include smoothing of the
gradients in the update function that is run at each iteration of gradient descent as shown in Listing 9.
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Figure 4: Full wave inversion using an envelope-based objective function and speed of sound gradient smoothing.

The results of this FWI algorithm on a noisy synthetic dataset are given in Fig. 4. Note that this example is only
intended to highlight the ability to take gradients of arbitrary computations using a discretize-then-optimize approach.

3.4 Focusing of time-harmonic simulations

As a final example, we demonstrate the differentiability of the time-harmonic solver. We transmit waves from a set of
n transducers, that act as monopole sources: that means that we can define a complex weighting vector, that defines
the amplitude and phase of the sources

a = (a0, . . . , an), ai ∈ C, ‖ai‖ < 1 (8)

such that ρ(a) is the transmitted wavefield. The unit norm constraint is needed to enforce the fact that each transducer
has an upper limit on the maximum power it can transmit. One could use several methods to represent this vector and
its constraint. Here, we use the following parameterization:

aj(ρj , θj) =
eiθj

1 + ρ2j
, (9)

where ρj and θh are real variables.

Often, one wants to find an apodization vector which returns a field having certain properties. For example, in tran-
scranial neurostimulation one may want to maximize the acoustic power delivered to a certain location: this is the
setup that we’ll use in this example (see Fig. 5 (a) ).

9



j-Wave: An open-source differentiable wave simulator

Speed of sound map

Transducers

Target

Focused field amplitude

1.0

1.2

1.4

1.6

1.8

2.0

0.1

0.2

0.3

0.4

0.5

Figure 5: Example where the differentiability of the time-harmonic simulator is used. (a) Simulation setup, with a
line of point transducers, heterogeneous sound speed and a focusing target; (b) The amplitude of the acoustic field
after optimizing the transmit apodization.

Let’s call p ∈ R2 the point where we want to maximize the wavefield. For a field φ(x,a) generated by the apodization
a, the optimal apodization is then given by

â = argmax
a

‖φ(p,a)‖. (10)

This defines the loss function that we are going to minimize using gradient descent. The full code for this example is
given in the notebook helmholtz solver differentiable.ipynb, in the examples folder. The resulting wavefield
after the optimization is shown in Fig. 5 (b).

4 Impact

j-Wave combines several ideas from the machine learning and inverse problems communities, and can be used to
investigate numerical and physical problems revolving around acoustic phenomena. The software is open-source and
is based on JAX, which uses an interface that closely follows the widely used NumPy package [23]. This means that
interested researchers can customize the software to their needs using a familiar syntax.

As a forward solver, j-Wave can be used as a simple pseudo-spectral acoustic simulator to perform numerical acoustic
experiments. The software can simulate wave propagation in homogeneous and heterogeneous media, both in the
frequency domain and in the time domain.

The differentiability of the solver can be exploited for a variety of tasks. By taking gradients with respect to the
acoustic parameters, j-Wave can perform discrete sensitivity analyses or can be used to learn machine-learning models
that perform model-based image inversion. Similarly, gradients with respect to the source parameters can be used for
model-based optimal control and training reinforcement learning agents that interact with an acoustic setup.

j-Wave as a differentiable forward model can also be exploited for uncertainty quantification. Besides Monte Carlo
methods that can be accelerated in j-Wave using single-device and multiple-device parallel transformations, there is
a growing body of techniques that are being developed to exploit simulation gradients for simulation-based inference
[8, 44]. For example, in [45], the use of linear uncertainty propagation (LUP) was proposed as a meta-programming
method to endow arbitrary (differential) simulations with uncertainty propagation in the Julia language [46]. Sup-
porting forward automatic differentiation allows LUP to be implemented with minimal memory requirements for
simulations that depend on a small number of parameters (e.g., uncertainty on the background speed of sound).

Since the operators relevant for acoustic simulations are implemented with JaxDF [22], it is possible to experiment
with arbitrary discretizations that contain tunable parameters. This could be leveraged for a variety of tasks such as
reduction of memory requirements, computational acceleration, or parameter inference. This is further aided by the
possibility of overriding the behaviour of operators for existing or user-defined discretizations. For example, a similar
approach has been used recently in computational fluid dynamics, where the authors trained a neural network-based
adaptive finite-difference scheme to perform accurate simulations on coarser collocation grids [31]. Alternatively, one
could employ learned error-correction schemes [21], directly optimize the stencils of a finite difference scheme [47],
or learn a preconditioner for the discretized Helmholtz equation [48].

Operators that represent a PDE, such as the Helmholtz operator, can also be constructed for arbitrary nonlinear dis-
cretizations, allowing the application of Physics Informed Neural Networks to solve the acoustic problem [10].
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5 Conclusions

An open-source differentiable acoustic simulator called j-Wave is presented that solves both time-harmonic and time-
varying forms of the wave equation. The simulator is written in JAX and is compatible with machine learning libraries.
Furthermore, it provides a differentiable implementation of the time-harmonic acoustic operator (Helmholtz operator)
that can be used either with both linear and non-linear arbitrary discretizations, including ones depending on a set of
tunable parameters. We expect j-Wave to be a useful tool for a wide range of acoustic-related lines of research: from
the investigation of numerical algorithms and machine learning ideas, to the design of acoustic imaging techniques
and materials.

6 Conflict of Interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no
significant financial support for this work that could have influenced its outcome.

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC), UK, grant numbers
EP/S026371/1 and EP/T022280/1.

References

[1] J.-F. Aubry, O. Bates, C. Boehm, K. B. Pauly, D. Christensen, C. Cueto, P. Gelat, L. Guasch, J. Jaros, Y. Jing, et al.,
Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave models, arXiv preprint
arXiv:2202.04552 (2022).

[2] J. Virieux, S. Operto, An overview of full-waveform inversion in exploration geophysics, Geophysics 74 (6) (2009) WCC1–
WCC26.

[3] M. Tabei, T. D. Mast, R. C. Waag, A k-space method for coupled first-order acoustic propagation equations, The Journal of
the Acoustical Society of America 111 (1) (2002) 53–63.

[4] G. F. Pinton, J. Dahl, S. Rosenzweig, G. E. Trahey, A heterogeneous nonlinear attenuating full-wave model of ultrasound,
IEEE transactions on ultrasonics, ferroelectrics, and frequency control 56 (3) (2009) 474–488.

[5] S. Pichardo, C. Moreno-Hernández, R. A. Drainville, V. Sin, L. Curiel, K. Hynynen, A viscoelastic model for the prediction
of transcranial ultrasound propagation: Application for the estimation of shear acoustic properties in the human skull, Physics
in Medicine & Biology 62 (17) (2017) 6938.

[6] U. Vyas, D. Christensen, Ultrasound beam simulations in inhomogeneous tissue geometries using the hybrid angular spectrum
method, IEEE transactions on ultrasonics, ferroelectrics, and frequency control 59 (6) (2012) 1093–1100.
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